Grassmann angles of infinite-dimensional cones
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 51-70
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 1985, B. S. Tsirelson discovered a deep connection between Gaussian processes and important geometric characteristics of a convex compact sets in an infinite-dimensional separable Hilbert space, called intrinsic volumes. F. Götze, Z. Kabluchko and D. N. Zaporozhets in their recent work (2021) presented a conic version of Tsirelson's theorem for Grassmann angles of finite-dimensional cones, which are analogues of intrinsic volumes, and also proved a theorem on the connection between the Grassmann angles of a positive hull of a set and the absorption probability of the convex hull of its Gaussian image. In this paper we prove a generalizations of the latter results to the case of infinite-dimensional cones in a separable Hilbert space.
@article{ZNSL_2023_525_a4,
     author = {M. K. Dospolova},
     title = {Grassmann angles of infinite-dimensional cones},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {51--70},
     year = {2023},
     volume = {525},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a4/}
}
TY  - JOUR
AU  - M. K. Dospolova
TI  - Grassmann angles of infinite-dimensional cones
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 51
EP  - 70
VL  - 525
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a4/
LA  - ru
ID  - ZNSL_2023_525_a4
ER  - 
%0 Journal Article
%A M. K. Dospolova
%T Grassmann angles of infinite-dimensional cones
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 51-70
%V 525
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a4/
%G ru
%F ZNSL_2023_525_a4
M. K. Dospolova. Grassmann angles of infinite-dimensional cones. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 51-70. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a4/

[1] M. K. Dospolova, “Smeshannyi ob'em beskonechnomernykh vypuklykh kompaktov”, Zap. nauchn. semin. POMI, 510, 2022, 98–123

[2] D. N. Zaporozhets, Nuli sluchainykh polinomov, raspredelenie algebraicheskikh chisel i vypuklye obolochki sluchainykh protsessov, Doktorskaya dissertatsiya, S.-Peterb. otd-nie Mat. in-ta im. V. A. Steklova RAN, 2017

[3] A. N. Kolmogorov, Matematika i mekhanika: izbrannye trudy, Nauka, 1985

[4] M. A. Lifshits, Gaussovskie sluchainye funktsii, Izdatelstvo TViMS, Kiev, 1995

[5] M. A. Lifshits, Lektsii po gaussovskim protsessam, Izdatelstvo Lan, 2016

[6] V. N. Sudakov, “Geometricheskie problemy teorii beskonechnomernykh veroyatnostnykh raspredelenii”, Trudy MIAN, 141, 1976, 3–191

[7] B. S. Tsirelson, “Estestvennaya modifikatsiya sluchainogo protsessa i ee prilozhenie k sluchainym funktsionalnym ryadam i gaussovskim meram”, Zap. nauchn. semin. POMI, 55, 1976, 35–63

[8] B. S. Tsirelson, “Geometricheskii podkhod k otsenke maksimalnogo pravdopodobiya dlya beskonechnomernogo gaussovskogo sdviga. I”, Teoriya veroyatn. i ee primen., 27:2 (1982), 388–395

[9] B. S. Tsirelson, “Geometricheskii podkhod k otsenke maksimalnogo pravdopodobiya dlya beskonechnomernogo gaussovskogo sdviga. II”, Teoriya veroyatn. i ee primen., 30:4 (1985), 772–779

[10] V. I. Bogachev, Gaussian measures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998

[11] S. Chevet, “Processus Gaussiens et volumes mixtes”, Z. für Wahrscheinlichkeitstheor Verw. Gebiete, 36:1 (1976), 47–65

[12] F. Gao, R. A. Vitale, “Intrinsic volumes of the Brownian motion body”, Discrete Comput. Geom., 26:1 (2001), 41–50

[13] F. Götze, Z. Kabluchko, D. N. Zaporozhets, “Grassmann angles and absorption probabilities of Gaussian convex hulls”, Zap. nauchn. semin. POMI, 501, 2021, 126–148

[14] B. Grünbaum, “Grassmann angles of convex polytopes”, Acta Math., 121 (1968), 293–302

[15] M. B. McCoy, J. A. Tropp, “From Steiner formulas for cones to concentration of intrinsic volumes”, Discrete Comput. Geom., 51:4 (2014), 926–963

[16] D. Nualart, The Malliavin Calculus and Related Topics, Probab. Appl., 2nd ed., Springer, Berlin, 2006

[17] R. Schneider, Convex bodies: the Brunn–Minkowski Theory, Encyclopedia Math. Appl., 151, expanded edition, Cambridge University Press, Cambridge, 2014

[18] R. Schneider, W. Weil, Stochastic and Integral Geometry, Probab. Appl. (N. Y.), Springer, Berlin, 2008