Grassmann angles of infinite-dimensional cones
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 51-70

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1985, B. S. Tsirelson discovered a deep connection between Gaussian processes and important geometric characteristics of a convex compact sets in an infinite-dimensional separable Hilbert space, called intrinsic volumes. F. Götze, Z. Kabluchko and D. N. Zaporozhets in their recent work (2021) presented a conic version of Tsirelson's theorem for Grassmann angles of finite-dimensional cones, which are analogues of intrinsic volumes, and also proved a theorem on the connection between the Grassmann angles of a positive hull of a set and the absorption probability of the convex hull of its Gaussian image. In this paper we prove a generalizations of the latter results to the case of infinite-dimensional cones in a separable Hilbert space.
@article{ZNSL_2023_525_a4,
     author = {M. K. Dospolova},
     title = {Grassmann angles of infinite-dimensional cones},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {51--70},
     publisher = {mathdoc},
     volume = {525},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a4/}
}
TY  - JOUR
AU  - M. K. Dospolova
TI  - Grassmann angles of infinite-dimensional cones
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 51
EP  - 70
VL  - 525
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a4/
LA  - ru
ID  - ZNSL_2023_525_a4
ER  - 
%0 Journal Article
%A M. K. Dospolova
%T Grassmann angles of infinite-dimensional cones
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 51-70
%V 525
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a4/
%G ru
%F ZNSL_2023_525_a4
M. K. Dospolova. Grassmann angles of infinite-dimensional cones. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 51-70. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a4/