Voir la notice du chapitre de livre
@article{ZNSL_2023_525_a3,
author = {A. N. Borodin},
title = {The second order local time of the {Bessel} process at the moment inverse to local time},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {30--50},
year = {2023},
volume = {525},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a3/}
}
A. N. Borodin. The second order local time of the Bessel process at the moment inverse to local time. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 30-50. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a3/
[1] A. N. Borodin, “Brounovskoe lokalnoe vremya vtorogo poryadka”, Zap. nauchn. semin. POMI, 505, 2021, 75–86
[2] A. N. Borodin, “Brounovskoe lokalnoe vremya vtorogo poryadka v moment, obratnyi k lokalnomu vremeni”, Zap. nauchn. semin. POMI, 510, 2022, 51–64
[3] F. B. Knight, “Random walks and a sojourn density process of Brownian motion”, Trans. Amer. Math. Soc., 109 (1963), 56–86
[4] D. B. Ray, “Sojourn times of a diffusion process”, Ill. J. Math., 7 (1963), 615–630
[5] A. N. Borodin, Sluchainye protsessy, Lan, Sankt-Peterburg, 2017
[6] A. N. Borodin, On the distribution of functionals of Brownian local time, LOMI Preprints E–4–85, L., 1985
[7] A. N. Borodin, P. Salminen, Spravochnik po brounovskomu dvizheniyu. Fakty i formuly, Lan, Sankt-Peterburg, 2016
[8] I. Karatzas, S. E. Shreve, Brovnian Motion and Stochastic Calculus, 2-nd ed., Springer, Berlin–Heidelberg–New York, 1991