On unattainability of infinity boundary of domain for a diffusion semi-Markov process with stop
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 150-160
Voir la notice de l'article provenant de la source Math-Net.Ru
One-dimensional continuous semi-Markov process of diffusion type is considered on an interval with one infinite boundary. Semi-Markov transition generating functions of the process satisfy ordinary differential equation of the second order. Coefficients of this equation determine distribution of beginning of infinite stop of the process. In terms of these coefficients one sufficient condition proved for the right boundary to be unattainable.
@article{ZNSL_2023_525_a11,
author = {B. P. Harlamov},
title = {On unattainability of infinity boundary of domain for a diffusion {semi-Markov} process with stop},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {150--160},
publisher = {mathdoc},
volume = {525},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a11/}
}
TY - JOUR AU - B. P. Harlamov TI - On unattainability of infinity boundary of domain for a diffusion semi-Markov process with stop JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 150 EP - 160 VL - 525 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a11/ LA - ru ID - ZNSL_2023_525_a11 ER -
B. P. Harlamov. On unattainability of infinity boundary of domain for a diffusion semi-Markov process with stop. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 150-160. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a11/