Voir la notice du chapitre de livre
@article{ZNSL_2023_525_a10,
author = {A. S. Tokmachev},
title = {On the average area of a triangle inscribed in a convex figure},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {134--149},
year = {2023},
volume = {525},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/}
}
A. S. Tokmachev. On the average area of a triangle inscribed in a convex figure. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 134-149. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/
[1] W. Blaschke, “Über affine Geometrie XI: Lösung des “Vierpunktproblems” von Sylvester äus der Theorie der geometrischen Wahrscheinlichkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl., 69 (1917), 436–453
[2] G. Bonnet, A. Gusakova, Ch. Thäle, D. Zaporozhets, “Sharp inequalities for the mean distance of random points in convex bodies”, Adv. Math., 326 (2021)
[3] A. S. Tokmachev, “Srednee rasstoyanie mezhdu sluchainymi tochkami na granitse vypukloi figury”, Zap. nauchn. semin. POMI, 510, 2022, 248–261
[4] R. N. Vadzinskii, Spravochnik po veroyatnostnym raspredeleniyam, Nauka, SPb., 2001
[5] S. N. Majumdar, A. Comtet, J. Randon-Furling, “Random convex hulls and extreme value statistics”, J. Stat. Phys., 138 (2010), 955–1009
[6] A. Hurwitz, “Sur le probleme des isoperimetres”, CR Acad. Sci. Paris, 132 (1901), 401–403