On the average area of a triangle inscribed in a convex figure
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 134-149
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $K$ be a convex figure in the plane, and let $A, B, C$ be random points on its boundary given by a uniform distribution. In this paper, we prove that the maximum average area of triangle $ABC$ is obtained on the circle when the perimeter of $K$ is fixed. We also prove that the average area of the triangle is continuous in the Hausdorff metric as a functional of $K$.
@article{ZNSL_2023_525_a10,
     author = {A. S. Tokmachev},
     title = {On the average area of a triangle inscribed in a convex figure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--149},
     year = {2023},
     volume = {525},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/}
}
TY  - JOUR
AU  - A. S. Tokmachev
TI  - On the average area of a triangle inscribed in a convex figure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 134
EP  - 149
VL  - 525
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/
LA  - ru
ID  - ZNSL_2023_525_a10
ER  - 
%0 Journal Article
%A A. S. Tokmachev
%T On the average area of a triangle inscribed in a convex figure
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 134-149
%V 525
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/
%G ru
%F ZNSL_2023_525_a10
A. S. Tokmachev. On the average area of a triangle inscribed in a convex figure. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 134-149. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/

[1] W. Blaschke, “Über affine Geometrie XI: Lösung des “Vierpunktproblems” von Sylvester äus der Theorie der geometrischen Wahrscheinlichkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl., 69 (1917), 436–453

[2] G. Bonnet, A. Gusakova, Ch. Thäle, D. Zaporozhets, “Sharp inequalities for the mean distance of random points in convex bodies”, Adv. Math., 326 (2021)

[3] A. S. Tokmachev, “Srednee rasstoyanie mezhdu sluchainymi tochkami na granitse vypukloi figury”, Zap. nauchn. semin. POMI, 510, 2022, 248–261

[4] R. N. Vadzinskii, Spravochnik po veroyatnostnym raspredeleniyam, Nauka, SPb., 2001

[5] S. N. Majumdar, A. Comtet, J. Randon-Furling, “Random convex hulls and extreme value statistics”, J. Stat. Phys., 138 (2010), 955–1009

[6] A. Hurwitz, “Sur le probleme des isoperimetres”, CR Acad. Sci. Paris, 132 (1901), 401–403