On the average area of a triangle inscribed in a convex figure
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 134-149

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a convex figure in the plane, and let $A, B, C$ be random points on its boundary given by a uniform distribution. In this paper, we prove that the maximum average area of triangle $ABC$ is obtained on the circle when the perimeter of $K$ is fixed. We also prove that the average area of the triangle is continuous in the Hausdorff metric as a functional of $K$.
@article{ZNSL_2023_525_a10,
     author = {A. S. Tokmachev},
     title = {On the average area of a triangle inscribed in a convex figure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {134--149},
     publisher = {mathdoc},
     volume = {525},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/}
}
TY  - JOUR
AU  - A. S. Tokmachev
TI  - On the average area of a triangle inscribed in a convex figure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 134
EP  - 149
VL  - 525
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/
LA  - ru
ID  - ZNSL_2023_525_a10
ER  - 
%0 Journal Article
%A A. S. Tokmachev
%T On the average area of a triangle inscribed in a convex figure
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 134-149
%V 525
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/
%G ru
%F ZNSL_2023_525_a10
A. S. Tokmachev. On the average area of a triangle inscribed in a convex figure. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 34, Tome 525 (2023), pp. 134-149. http://geodesic.mathdoc.fr/item/ZNSL_2023_525_a10/