@article{ZNSL_2023_524_a9,
author = {V. N. Chugunov},
title = {Absence of solutions to the $\sigma$-commutation problem $(\sigma\ne 0$, $\pm 1)$ for {Toeplitz} and {Hankel} matrices in a special class},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {125--132},
year = {2023},
volume = {524},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a9/}
}
TY - JOUR AU - V. N. Chugunov TI - Absence of solutions to the $\sigma$-commutation problem $(\sigma\ne 0$, $\pm 1)$ for Toeplitz and Hankel matrices in a special class JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 125 EP - 132 VL - 524 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a9/ LA - ru ID - ZNSL_2023_524_a9 ER -
%0 Journal Article %A V. N. Chugunov %T Absence of solutions to the $\sigma$-commutation problem $(\sigma\ne 0$, $\pm 1)$ for Toeplitz and Hankel matrices in a special class %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 125-132 %V 524 %U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a9/ %G ru %F ZNSL_2023_524_a9
V. N. Chugunov. Absence of solutions to the $\sigma$-commutation problem $(\sigma\ne 0$, $\pm 1)$ for Toeplitz and Hankel matrices in a special class. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 125-132. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a9/
[1] A. E. Guterman, O. V. Markova, V. Mehrmann, “Length realizability for pairs of quasi-commuting matrices”, Linear Algebra Appl., 568 (2019), 135–154 | DOI | MR | Zbl
[2] C. Kassel, Quantum Groups, Grad. Texts in Math., 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[3] Yu. I. Manin, Quantum Groups and Non-Sommutative Geometry, CRM, Montréal, 1988 | MR
[4] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, Boston–Basel–Berlin, 1997 | MR | Zbl
[5] V. N. Chugunov, “O nekotorykh mnozhestvakh par $\sigma$-kommutiruyuschikh ($\sigma \ne 0, \pm 1$) teplitsevoi i gankelevoi matrits”, Zap. nauchn. semin. POMI, 482 (2019), 288–294
[6] V. N. Chugunov, Kh. D. Ikramov, “Ob odnom chastnom reshenii zadachi o $\sigma$-kommutirovanii ($\sigma\ne 0, \pm 1$) teplitsevoi i gankelevoi matrits”, Zh. vychisl. matem. matem. fiz., 63:11 (2023), 1817–1828
[7] V. I. Gelfgat, “Usloviya kommutirovaniya teplitsevykh matrits”, Zh. vychisl. matem. matem. fiz., 38:1 (1998), 11–14 | MR | Zbl