Voir la notice du chapitre de livre
@article{ZNSL_2023_524_a8,
author = {O. V. Markova},
title = {Commutative matrix subalgebras generated by nonderogatory matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {112--124},
year = {2023},
volume = {524},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a8/}
}
O. V. Markova. Commutative matrix subalgebras generated by nonderogatory matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 112-124. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a8/
[1] E. B. Vinberg, Kurs algebry, 3-e izd., Faktorial Press, M., 2002
[2] F. R. Gantmakher, Teoriya Matrits, 4-e izd., Nauka, M., 1988 | MR
[3] R. Lidl, G. Niderraiter, Konechnye polya, V 2-kh tomakh, Mir, M., 1988
[4] O. V. Markova, “Kharakterizatsiya kommutativnykh matrichnykh podalgebr maksimalnoi dliny nad proizvolnym polem”, Vestn. Mosk. un-ta. Ser.1. Matematika. Mekhanika, 5 (2009), 53–55 | Zbl
[5] O. V. Markova, “Funktsiya dliny i matrichnye algebry”, Fundam. prikl. matem., 17:6 (2012), 65–173
[6] O. V. Markova, “Funktsiya dliny i odnovremennaya triangulizuemost par matrits”, Zap. nauchn. semin. POMI, 514 (2022), 126–137
[7] O. V. Markova, D. Yu. Novochadov, “Sistemy porozhdayuschikh polnoi matrichnoi algebry, soderzhaschie tsiklicheskie matritsy”, Zap. nauchn. semin. POMI, 504 (2021), 157–171
[8] R. Pirs, Assotsiativnye algebry, Mir, M., 1986
[9] G. Endryus, Teoriya razbienii, Nauka, M., 1982
[10] N. A. Brigham, “A general asymptotic formula for partition functions”, Proc. Amer. Math. Soc., 1 (1950), 182–191 | DOI | MR | Zbl
[11] G. Dolinar, A. Guterman, B. Kuzma, P. Oblak, “Extremal matrix centralizers”, Linear Algebra Appl., 438:7 (2013), 2904–2910 | DOI | MR | Zbl
[12] A. E. Guterman, T. Laffey, O. V. Markova, H. Šmigoc, “A resolution of Paz's conjecture in the presence of a nonderogatory matrix”, Linear Algebra Appl., 543 (2018), 234–250 | DOI | MR | Zbl
[13] A. E. Guterman, O. V. Markova, “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 | DOI | MR | Zbl
[14] A. E. Guterman, O. V. Markova, V. Mehrmann, “Lengths of quasi-commutative pairs of matrices”, Linear Algebra Appl., 498 (2016), 450–470 | DOI | MR | Zbl
[15] R. Horn, C. Johnson, Matrix Analysis, 2nd edition, Cambridge University Press, 2013 | MR | Zbl
[16] V. Kotesovec, Asymptotics of Sequence A002513, 2019
[17] W. E. Longstaff, “Burnside's theorem: irreducible pairs of transformations”, Linear Algebra Appl., 382 (2004), 247–269 | DOI | MR | Zbl
[18] W. E. Longstaff, “On minimal sets of $(0,1)$-matrices whose pairwise products form a basis for $M_n(\mathbb{F})$”, Bull. Austral. Math. Soc., 98:3 (2018), 402–413 | DOI | MR | Zbl
[19] W. E. Longstaff, “Irreducible families of complex matrices containing a rank-one matrix”, Bull. Austral. Math. Soc., 102:2 (2020), 226–236 | DOI | MR | Zbl
[20] On-Line Encyclopedia of Integer Sequences (OEIS)
[21] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[22] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[23] A. Wadsworth, “The algebra generated by two commuting matrices”, Linear Multilinear Algebra, 27 (1990), 159–162 | DOI | MR | Zbl