@article{ZNSL_2023_524_a7,
author = {L. P. Livshits and A. A. Makarov and S. V. Makarova},
title = {On quasilinear interpolation by minimal splines},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {94--111},
year = {2023},
volume = {524},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a7/}
}
L. P. Livshits; A. A. Makarov; S. V. Makarova. On quasilinear interpolation by minimal splines. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 94-111. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a7/
[1] Yu. S. Volkov, V. V. Bogdanov, “O pogreshnosti priblizheniya prosteishei lokalnoi approksimatsiei splainami”, Sib. matem. zh., 61:5 (2020), 1000–1008 | MR | Zbl
[2] Yu. K. Demyanovich, “O postroenii prostranstv lokalnykh funktsii na neravnomernoi setke”, Zap. nauchn. semin. LOMI, 124 (1983), 140–163 | Zbl
[3] Yu. K. Demyanovich, Lokalnaya approkcimatsiya na mnogoobrazii i minimalnye cplainy, SPb, 1994
[4] Yu. K. Demyanovich, Vspleski i minimalnye cplainy, SPb, 2003
[5] Yu. K. Demyanovich, Teoriya cplain-vspleskov, SPb, 2013
[6] Yu. K. Demyanovich, V. O. Dron, O. N. Ivantsova, “Ob approksimatsii $B_{\varphi }$-splainami”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 3 (2013), 67–72
[7] Yu. K. Demyanovich, A. A. Makarov, “Neobkhodimye i dostatochnye usloviya neotritsatelnosti koordinatnykh trigonometricheskikh splainov vtorogo poryadka”, Vestn. S.-Peterb. un-ta. Ser. 1, 4(62):1 (2017), 9–16 | MR
[8] A. Yu. Demyanovich, V. N. Malozemov, “Funktsii Dzhenkinsa i minimalnye splainy”, Vestn. S.-Peterb. un-ta. ser. 1, 2:8 (1998), 38–43 | Zbl
[9] Yu. K. Demyanovich, S. G. Mikhlin, “O setochnoi approksimatsii funktsii sobolevskikh prostranstv”, Zap. nauchn. semin. LOMI, 35 (1973), 6–11 | Zbl
[10] Yu. S. Zavyalov, B. I. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, M., 1980 | MR
[11] E. K. Kulikov, A. A. Makarov, “Ob approksimatsii giperbolicheskimi splainami”, Zap. nauchn. semin. POMI, 472 (2018), 179–194
[12] E. K. Kulikov, A. A. Makarov, “O kvadratichnykh minimalnykh splainakh s kratnymi uzlami”, Zap. nauchn. semin. POMI, 482 (2019), 220–230
[13] E. K. Kulikov, A. A. Makarov, “O modifitsirovannom metode splain-kollokatsii resheniya integralnogo uravneniya Fredgolma”, Diff. ur. prots. upr., 4 (2021), 211–223 | Zbl
[14] E. K. Kulikov, A. A. Makarov, “Ob odnom metode resheniya integralnogo uravneniya Fredgolma pervogo roda”, Zap. nauchn. semin. POMI, 514 (2022), 113–125
[15] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Probl. matem. anal., 60 (2011), 25–38 | Zbl
[16] A. A. Makarov, “Biortogonalnye sistemy funktsionalov i matritsy dekompozitsii dlya minimalnykh splainov”, Ukr. mat. visn., 9:2 (2012), 219–236 | Zbl
[17] A. A. Makarov, “O dvoistvennykh funktsionalakh k minimalnym splainam”, Zap. nauchn. semin. POMI, 453 (2016), 198–218
[18] S. G. Mikhlin, “Variatsionno-setochnaya approksimatsiya”, Zap. nauchn. semin. LOMI, 48 (1974), 32–188 | MR | Zbl
[19] V. S. Ryabenkii, Ob ustoichivosti konechno-raznostnykh uravnenii, Dis. kand. fiz.-mat. nauk, M., 1952 | Zbl
[20] G. Streng, Dzh. Fiks, Teoriya metoda konechnykh elementov, M., 1977 | MR
[21] B. M. Shumilov, E. A. Esharov, N. K. Arkabaev, “Postroenie i optimizatsiya prognozov na osnove rekurrentnykh splainov pervoi stepeni”, Sib. zh. vychisl. matem., 13:2 (2010), 227–241 | Zbl
[22] I. V. Yuyukin, “Interpolyatsiya navigatsionnoi funktsii splainom lagranzheva tipa”, Vestn. Gos. un-ta morsk. rechn. flota, 12:1 (2020), 57–70
[23] C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 2001 | MR | Zbl
[24] M. Buhmann, J. Jäger, Quasi-Interpolation, Cambridge University Press, 2022 | MR
[25] G. Y. Deniskina, Y. I. Deniskin, Y. I. Bityukov, “About some computational algorithms for local approximation splines, based on the wavelet transformation and convolution”, Lect. Notes Electr. Eng., 729, 2021, 182–191 | DOI
[26] J. J. Goel, “Construction of basis functions for numerical utilization of Ritz's method”, Numer. Math., 12 (1968), 435–447 | DOI | MR | Zbl
[27] O. Kosogorov, A. Makarov, “On some piecewise quadratic spline functions”, Lect. Notes Comput. Sci., 10187, 2017, 448–455 | DOI | MR | Zbl
[28] E. Kulikov, A. Makarov, “On de Boor–Fix type functionals for minimal splines”, Topics in Classical and Modern Analysis, Applied and Numerical Harmonic Analysis, 2019, 211–225 | DOI | MR
[29] E. Kulikov, A. Makarov, “On biorthogonal approximation of solutions of some boundary value problems on Shishkin mesh”, AIP Conf. Proc., 2302 (2020), 110005 | DOI
[30] A. A. Makarov, “On example of circular arc approximation by quadratic minimal splines”, Poincare J. Anal. Appl., 2(II) (2018), 103–107 | DOI | MR | Zbl
[31] V. L. Leontiev, “Orthogonal splines in approximation of functions”, Math. Statistic, 8:2 (2020), 167–172 | DOI
[32] I. J. Schoenberg, “Contributions to the problem of approximation of equidistant data by analytic functions”, Quart. Appl. Math., 4 (1946), 45–99 ; 112–141 | DOI | MR | Zbl
[33] L. L. Schumaker, Spline Functions: Computational Methods, Society for Industrial and Applied Mathematics, 2015 | MR | Zbl
[34] G. Strang, G. Fix, “Fourier analysis of the finite element method in Ritz–Galerkin theory”, Stud. Appl. Math., 48:3 (1969), 265–273 | DOI | MR | Zbl
[35] A. I. Zadorin, “Interpolation method for a function with a singular component”, Lect. Notes Comp. Sci., 5434, 2009, 612–619 | DOI | Zbl