$\mathrm{SDD}_1$ matrices and their generalizations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 74-93
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper considers the classes of $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices, which contain the class of $\mathrm{SDD}$ (strictly diagonally dominant) matrices and are contained in the class of nonsingular $\mathcal{H}$-matrices. New upper bounds on $\|A^{-1}\|_\infty$ for $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices $A$, generalizing known upper bounds for $S$-$\mathrm{SDD}$, $\mathrm{SDD}_1^*$, and $\mathrm{GSDD}_1$ matrices, are established and compared.
			
            
            
            
          
        
      @article{ZNSL_2023_524_a6,
     author = {L. Yu. Kolotilina},
     title = {$\mathrm{SDD}_1$ matrices and their generalizations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--93},
     publisher = {mathdoc},
     volume = {524},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/}
}
                      
                      
                    L. Yu. Kolotilina. $\mathrm{SDD}_1$ matrices and their generalizations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 74-93. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/