$\mathrm{SDD}_1$ matrices and their generalizations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 74-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers the classes of $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices, which contain the class of $\mathrm{SDD}$ (strictly diagonally dominant) matrices and are contained in the class of nonsingular $\mathcal{H}$-matrices. New upper bounds on $\|A^{-1}\|_\infty$ for $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices $A$, generalizing known upper bounds for $S$-$\mathrm{SDD}$, $\mathrm{SDD}_1^*$, and $\mathrm{GSDD}_1$ matrices, are established and compared.
@article{ZNSL_2023_524_a6,
     author = {L. Yu. Kolotilina},
     title = {$\mathrm{SDD}_1$ matrices and their generalizations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--93},
     year = {2023},
     volume = {524},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - $\mathrm{SDD}_1$ matrices and their generalizations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 74
EP  - 93
VL  - 524
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/
LA  - ru
ID  - ZNSL_2023_524_a6
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T $\mathrm{SDD}_1$ matrices and their generalizations
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 74-93
%V 524
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/
%G ru
%F ZNSL_2023_524_a6
L. Yu. Kolotilina. $\mathrm{SDD}_1$ matrices and their generalizations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 74-93. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/

[1] L. Yu. Kolotilina, “Psevdoblochnye usloviya diagonalnogo preobladaniya”, Zap. nauchn. semin. POMI, 323, 2005, 94–131 | Zbl

[2] L. Yu. Kolotilina, “Otsenki opredelitelei i obratnykh dlya nekotorykh $H$-matrits”, Zap. nauchn. semin. POMI, 346, 2007, 81–102

[3] L. Yu. Kolotilina, “Ob SDD$_1$ matritsakh”, Zap. nauchn. semin. POMI, 514, 2022, 88–112

[4] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR | Zbl

[5] X. Cheng, Y. Li, L. Liu, Y. Wang, “Infinity norm upper bounds for the inverse of SDD$_1$ matrices”, AIMS Math., 7:5 (2022), 8847–8860 | DOI | MR

[6] L. Cvetković, V. Kostić, R. Varga, “A new Gers̆gorin-type eigenvalue inclusion area”, ETNA, 18 (2004), 73–80 | MR | Zbl

[7] P. F. Dai, “A note on diagonal dominance, Schur complements and some classes of H-matrices and P-matrices”, Adv. Comput. Math., 42 (2016), 1–4 | DOI | MR | Zbl

[8] Ping-Fan Dai, Jinping Li, Shaoyu Zhao, “Infinity norn bounds for the inverse for GSDD$_1$ matrices using scaling matrices”, Comput. Appl. Math., 42 (2023), 121 | DOI | MR

[9] Y. M. Gao, X. H. Wang, “Criteria for generalized diagonal dominant and M-matrices”, Linear Algebra Appl., 169 (1992), 257–268 | DOI | MR | Zbl

[10] Y. Li, Y. Wang, “Schur complement-based infinity norm bounds for the inverse of GDSDD matrices”, Mathematics, 10 (2022), 186 | DOI | MR | Zbl

[11] J. Liu, Y. Huang, F. Zhang, “The Schur complements of generalized doubly diagonally dominant matrices”, Linear Algebra Appl., 378 (2004), 231–244 | DOI | MR | Zbl

[12] N. Morac̆a, “Upper bounds for the infinity norm of the inverse of SDD and $\mathcal S $-SDD matrices”, J. Comput. Appl. Math., 206 (2007), 666–678 | DOI | MR | Zbl

[13] J. M. Peña, “Diagonal dominance, Schur complements and some classes of $H$-matrices and P-matrices”, Adv. Comput. Math., 35 (2011), 357–373 | DOI | MR | Zbl

[14] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl

[15] R. S. Varga, Gers̆gorin and His Circles, Springer, 2004 | MR | Zbl