$\mathrm{SDD}_1$ matrices and their generalizations
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 74-93

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the classes of $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices, which contain the class of $\mathrm{SDD}$ (strictly diagonally dominant) matrices and are contained in the class of nonsingular $\mathcal{H}$-matrices. New upper bounds on $\|A^{-1}\|_\infty$ for $\mathrm{GSDD}_1$, $\mathrm{GSDD}_1^*$, and $SD$-$\mathrm{SDD}$ matrices $A$, generalizing known upper bounds for $S$-$\mathrm{SDD}$, $\mathrm{SDD}_1^*$, and $\mathrm{GSDD}_1$ matrices, are established and compared.
@article{ZNSL_2023_524_a6,
     author = {L. Yu. Kolotilina},
     title = {$\mathrm{SDD}_1$ matrices and their generalizations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {74--93},
     publisher = {mathdoc},
     volume = {524},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - $\mathrm{SDD}_1$ matrices and their generalizations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 74
EP  - 93
VL  - 524
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/
LA  - ru
ID  - ZNSL_2023_524_a6
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T $\mathrm{SDD}_1$ matrices and their generalizations
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 74-93
%V 524
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/
%G ru
%F ZNSL_2023_524_a6
L. Yu. Kolotilina. $\mathrm{SDD}_1$ matrices and their generalizations. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 74-93. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a6/