@article{ZNSL_2023_524_a5,
author = {L. Yu. Kolotilina},
title = {Upper bounds for $\|A^{-1}\|_\infty$ for some eventually $\mathcal{H}$-matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {64--73},
year = {2023},
volume = {524},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a5/}
}
L. Yu. Kolotilina. Upper bounds for $\|A^{-1}\|_\infty$ for some eventually $\mathcal{H}$-matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 64-73. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a5/
[1] L. Yu. Kolotilina, “Nekotorye novye klassy nevyrozhdennykh matrits i verkhnie otsenki dlya ikh obratnykh”, Zap. nauchn. semin. POMI, 482, 2019, 184–200
[2] L. Yu. Kolotilina, “Verkhnie otsnki dlya $\|A^{-1}Q\|_\infty$”, Zap. nauchn. semin. POMI, 514, 2022, 77–87
[3] J. H. Ahlberg, E. N. Nilson, “Convergence properties of the spline fit”, J. Soc. Ind. Appl. Math., 11 (1963), 95–104 | DOI | MR | Zbl
[4] L. Cvetković, M. Erić, J. M. Peña, “Eventually SDD matrices and eigenvalue localization”, Appl. Math. Comput., 252 (2015), 535–540 | MR | Zbl
[5] V. R. Kostić, L. Cvetković, D. I. Cvetković, “Pseudospectra localization and their applications”, Numer. Linear Algebra Appl., 23 (2016), 356–372 | DOI | MR | Zbl
[6] Y. Li, Y. Wang, “Schur complement-based infinity norm bounds for the inverse of GDSDD matrices”, Mathematics, 10 (2022), 186 | DOI | MR | Zbl
[7] J. Liu, J. Zhang, Y. Liu, “The Schur complement of strictly doubly diagonally dominant matrices and its application”, Linear Algebra Appl., 437 (2012), 168–183 | DOI | MR | Zbl
[8] A. Melman, “Ovals of Cassini for Toeplitz matrices”, Linear Multilinear Algebra, 60 (2012), 189–199 | DOI | MR | Zbl
[9] S. Z. Pan, S. C. Chen, “An upper bound for $\|A^{-1} \|_\infty$ of strictly doubly diagonally dominant matrices”, J. Fuzhou Univ. Nat. Sci. Ed., 36 (2008), 639–642 (in Chinese) | MR
[10] C. Sang, “Schur complement-based infinity norm bounds for the inverse of $DSDD$ matrices”, Bull. Iran. Math. Soc., 47 (2020), 1379–1398 | DOI | MR
[11] C. Sang, J. X. Zhao, “Eventually DSDD matrices and eigenvalue localization”, Symmetry, 448:10 (2018) | DOI
[12] J. M. Varah, “A lower bound for the smallest singular value of a matrix”, Linear Algebra Appl., 11 (1975), 3–5 | DOI | MR | Zbl
[13] X. R. Yong, “Two properties of diagonally dominant matrices”, Numer. Linear Algebra, 3 (1996), 173–177 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl