Upper bounds for the spectral radius of a PF matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 56-63

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper suggests and illustrates a simple unified approach to deriving upper bounds for the dominant eigenvalues of the so-called PF matrices (or matrices with the Perron–Frobenius property) from those for the Perron root of a nonnegative matrix.
@article{ZNSL_2023_524_a4,
     author = {L. Yu. Kolotilina},
     title = {Upper bounds for the spectral radius of a {PF} matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--63},
     publisher = {mathdoc},
     volume = {524},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Upper bounds for the spectral radius of a PF matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 56
EP  - 63
VL  - 524
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/
LA  - ru
ID  - ZNSL_2023_524_a4
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Upper bounds for the spectral radius of a PF matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 56-63
%V 524
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/
%G ru
%F ZNSL_2023_524_a4
L. Yu. Kolotilina. Upper bounds for the spectral radius of a PF matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 56-63. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/