Upper bounds for the spectral radius of a PF matrix
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 56-63
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper suggests and illustrates a simple unified approach to deriving upper bounds for the dominant eigenvalues of the so-called PF matrices (or matrices with the Perron–Frobenius property) from those for the Perron root of a nonnegative matrix.
			
            
            
            
          
        
      @article{ZNSL_2023_524_a4,
     author = {L. Yu. Kolotilina},
     title = {Upper bounds for the spectral radius of a {PF} matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--63},
     publisher = {mathdoc},
     volume = {524},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/}
}
                      
                      
                    L. Yu. Kolotilina. Upper bounds for the spectral radius of a PF matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 56-63. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/