Upper bounds for the spectral radius of a PF matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 56-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper suggests and illustrates a simple unified approach to deriving upper bounds for the dominant eigenvalues of the so-called PF matrices (or matrices with the Perron–Frobenius property) from those for the Perron root of a nonnegative matrix.
@article{ZNSL_2023_524_a4,
     author = {L. Yu. Kolotilina},
     title = {Upper bounds for the spectral radius of a {PF} matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {56--63},
     year = {2023},
     volume = {524},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Upper bounds for the spectral radius of a PF matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 56
EP  - 63
VL  - 524
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/
LA  - ru
ID  - ZNSL_2023_524_a4
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Upper bounds for the spectral radius of a PF matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 56-63
%V 524
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/
%G ru
%F ZNSL_2023_524_a4
L. Yu. Kolotilina. Upper bounds for the spectral radius of a PF matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 56-63. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a4/

[1] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | Zbl

[2] L. Yu. Kolotilina, “Ob uluchshenii otsenok Chistyakova dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 346, 2007, 103–118

[3] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl

[4] A. Brauer, I. C. Gentry, “Bounds for the greatest characteristic root of an irreducible nonnegative matrix”, Linear Algebra Appl., 8 (1974), 105–107 | DOI | MR | Zbl

[5] Jun He, Yanmin Liu, Wei Lv, “New upper bounds for the dominant eigenvalue of a matrix with Perron–Frobenius property”, J. Ineq. Appl., 2023:13 (2023) | MR

[6] D. Noutsos, “On Perron–Frobenius property of matrices having some negative entries”, Linear Algebra Appl., 412 (2006), 132–153 | DOI | MR | Zbl

[7] A. M. Ostrowski, “Über das Nichtverschwinden einer Klasse von Determinanten und die Lokalisierung der charakteristischen Wurzeln von Matrizen”, Comp. Math., 9 (1951), 209–226 | MR | Zbl