Diameter of the commutativity graph of the real sedenions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 36-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The commutativity graph of the real sedenion algebra is considered. It is shown that those elements whose imaginary part is not a zero divisor correspond to isolated vertices of this graph. All other elements form a connected component whose diameter equals 3.
@article{ZNSL_2023_524_a3,
     author = {S. A. Zhilina},
     title = {Diameter of the commutativity graph of the real sedenions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--55},
     year = {2023},
     volume = {524},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a3/}
}
TY  - JOUR
AU  - S. A. Zhilina
TI  - Diameter of the commutativity graph of the real sedenions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 36
EP  - 55
VL  - 524
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a3/
LA  - ru
ID  - ZNSL_2023_524_a3
ER  - 
%0 Journal Article
%A S. A. Zhilina
%T Diameter of the commutativity graph of the real sedenions
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 36-55
%V 524
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a3/
%G ru
%F ZNSL_2023_524_a3
S. A. Zhilina. Diameter of the commutativity graph of the real sedenions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 36-55. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a3/

[1] A. E. Guterman, S. A. Zhilina, “Grafy otnoshenii veschestvennykh algebr Keli–Diksona”, Zap. nauchn. semin. POMI, 472, 2018, 44–75

[2] A. E. Guterman, S. A. Zhilina, “Grafy otnoshenii algebry sedenionov”, Zap. nauchn. semin. POMI, 496, 2020, 61–86

[3] A. E. Guterman, S. A. Zhilina, “Kontr-algebry Keli–Diksona: dvazhdy alternativnye deliteli nulya i grafy otnoshenii”, Fundam. prikl. mat., 23:3 (2020), 95–129

[4] S. A. Zhilina, “Grafy otnoshenii algebry kontrsedenionov”, Zap. nauchn. semin. POMI, 482, 2019, 87–113

[5] S. A. Zhilina, “O dvazhdy alternativnykh delitelyakh nulya v algebrakh Keli–Diksona”, Zap. nauchn. semin. POMI, 514, 2022, 18–54

[6] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2001), 145–205 | DOI | MR

[7] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley–Dickson algebras”, Comm. Algebra, 36:2 (2008), 632–664 | DOI | MR | Zbl

[8] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley–Dickson algebras II”, Bol. Soc. Mat. Mex., 13:2 (2007), 269–292 | MR | Zbl

[9] A. Elduque, “Gradings on symmetric composition algebras”, J. Algebra, 322:10 (2009), 3542–3579 | DOI | MR | Zbl

[10] A. Lopatin, A. Zubkov, Classification of $G_2$-orbits for pairs of octonions, 2022, arXiv: math/2208.08122

[11] K. McCrimmon, A Taste of Jordan Algebras, Springer-Verlag, New York, 2004 | MR | Zbl

[12] G. Moreno, “The zero divisors of the Cayley–Dickson algebras over the real numbers”, Bol. Soc. Mat. Mex., 4:1 (1998), 13–28 | MR | Zbl

[13] G. Moreno, “Alternative elements in the Cayley–Dickson algebras”, Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebañski, World Sci. Publ., Hackensack, New Jersey, 2006, 333–346 | DOI | MR | Zbl

[14] G. Moreno, Constructing zero divisors in the higher dimensional Cayley–Dickson algebras, 2005, arXiv: math/0512517

[15] A. Pixton, “Alternators in the Cayley–Dickson algebras”, Forum Math., 21:5 (2009), 853–869 | DOI | MR | Zbl

[16] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, Amer. J. Math., 76:2 (1954), 435–446 | DOI | MR | Zbl

[17] Y. Tian, “Matrix representations of octonions and their applications”, Adv. Appl. Clifford Algebr., 10 (2000), 61–90 | DOI | MR | Zbl

[18] S. Zhilina, “Orthogonality graphs of real Cayley–Dickson algebras. Part I: Doubly alternative zero divisors and their hexagons”, Int. J. Algebra Comput., 31:4 (2021), 663–689 | DOI | MR | Zbl