@article{ZNSL_2023_524_a3,
author = {S. A. Zhilina},
title = {Diameter of the commutativity graph of the real sedenions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {36--55},
year = {2023},
volume = {524},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a3/}
}
S. A. Zhilina. Diameter of the commutativity graph of the real sedenions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 36-55. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a3/
[1] A. E. Guterman, S. A. Zhilina, “Grafy otnoshenii veschestvennykh algebr Keli–Diksona”, Zap. nauchn. semin. POMI, 472, 2018, 44–75
[2] A. E. Guterman, S. A. Zhilina, “Grafy otnoshenii algebry sedenionov”, Zap. nauchn. semin. POMI, 496, 2020, 61–86
[3] A. E. Guterman, S. A. Zhilina, “Kontr-algebry Keli–Diksona: dvazhdy alternativnye deliteli nulya i grafy otnoshenii”, Fundam. prikl. mat., 23:3 (2020), 95–129
[4] S. A. Zhilina, “Grafy otnoshenii algebry kontrsedenionov”, Zap. nauchn. semin. POMI, 482, 2019, 87–113
[5] S. A. Zhilina, “O dvazhdy alternativnykh delitelyakh nulya v algebrakh Keli–Diksona”, Zap. nauchn. semin. POMI, 514, 2022, 18–54
[6] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc. (N.S.), 39 (2001), 145–205 | DOI | MR
[7] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley–Dickson algebras”, Comm. Algebra, 36:2 (2008), 632–664 | DOI | MR | Zbl
[8] D. K. Biss, D. Dugger, D. C. Isaksen, “Large annihilators in Cayley–Dickson algebras II”, Bol. Soc. Mat. Mex., 13:2 (2007), 269–292 | MR | Zbl
[9] A. Elduque, “Gradings on symmetric composition algebras”, J. Algebra, 322:10 (2009), 3542–3579 | DOI | MR | Zbl
[10] A. Lopatin, A. Zubkov, Classification of $G_2$-orbits for pairs of octonions, 2022, arXiv: math/2208.08122
[11] K. McCrimmon, A Taste of Jordan Algebras, Springer-Verlag, New York, 2004 | MR | Zbl
[12] G. Moreno, “The zero divisors of the Cayley–Dickson algebras over the real numbers”, Bol. Soc. Mat. Mex., 4:1 (1998), 13–28 | MR | Zbl
[13] G. Moreno, “Alternative elements in the Cayley–Dickson algebras”, Topics in Mathematical Physics, General Relativity and Cosmology in Honor of Jerzy Plebañski, World Sci. Publ., Hackensack, New Jersey, 2006, 333–346 | DOI | MR | Zbl
[14] G. Moreno, Constructing zero divisors in the higher dimensional Cayley–Dickson algebras, 2005, arXiv: math/0512517
[15] A. Pixton, “Alternators in the Cayley–Dickson algebras”, Forum Math., 21:5 (2009), 853–869 | DOI | MR | Zbl
[16] R. D. Schafer, “On the algebras formed by the Cayley–Dickson process”, Amer. J. Math., 76:2 (1954), 435–446 | DOI | MR | Zbl
[17] Y. Tian, “Matrix representations of octonions and their applications”, Adv. Appl. Clifford Algebr., 10 (2000), 61–90 | DOI | MR | Zbl
[18] S. Zhilina, “Orthogonality graphs of real Cayley–Dickson algebras. Part I: Doubly alternative zero divisors and their hexagons”, Int. J. Algebra Comput., 31:4 (2021), 663–689 | DOI | MR | Zbl