Linear transformations preserving minimal values of the cyclicity index of tropical matrices
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 18-35
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The cyclicity index of a directed graph is defined as the least common multiple of the cyclicity indices of all its strongly connected components, and the cyclicity index of a strongly connected directed graph is equal to the greatest common divisor of the lengths of all its directed cycles. The cyclicity index of a tropical matrix is the cyclicity index of its critical subgraph, i.e., the subgraph of the adjacency graph, consisting of all cycles with the largest average weight. This paper considers linear transformations of tropical matrices that preserve only two values of the cyclicity index, 1 and 2. A complete characterization of such transformations is obtained. To this end, it is proved that the values 1 and 2 of the cyclicity index are preserved if and only if all its values are preserved. It is shown that there are mappings of another type that preserve one fixed value of the cyclicity index.
			
            
            
            
          
        
      @article{ZNSL_2023_524_a2,
     author = {A. V. Vlasov and A. E. Guterman and E. M. Kreines},
     title = {Linear transformations preserving minimal values of the cyclicity index of tropical matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--35},
     publisher = {mathdoc},
     volume = {524},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a2/}
}
                      
                      
                    TY - JOUR AU - A. V. Vlasov AU - A. E. Guterman AU - E. M. Kreines TI - Linear transformations preserving minimal values of the cyclicity index of tropical matrices JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 18 EP - 35 VL - 524 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a2/ LA - ru ID - ZNSL_2023_524_a2 ER -
%0 Journal Article %A A. V. Vlasov %A A. E. Guterman %A E. M. Kreines %T Linear transformations preserving minimal values of the cyclicity index of tropical matrices %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 18-35 %V 524 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a2/ %G ru %F ZNSL_2023_524_a2
A. V. Vlasov; A. E. Guterman; E. M. Kreines. Linear transformations preserving minimal values of the cyclicity index of tropical matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 18-35. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a2/