@article{ZNSL_2023_524_a11,
author = {M. A. Khrystik},
title = {Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {166--176},
year = {2023},
volume = {524},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/}
}
TY - JOUR AU - M. A. Khrystik TI - Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 166 EP - 176 VL - 524 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/ LA - ru ID - ZNSL_2023_524_a11 ER -
M. A. Khrystik. Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 166-176. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/
[1] A. E. Guterman, O. V. Markova, “Dlina gruppovykh algebr grupp nebolshogo razmera”, Zap. nauchn. semin. POMI, 472, 2018, 76–87
[2] O. V. Markova, “Verkhnyaya otsenka dliny kommutativnykh algebr”, Matem. sb., 200:12 (2009), 41–62 | DOI | Zbl
[3] O. V. Markova, “Primer vychisleniya dliny gruppovoi algebry netsiklicheskoi abelevoi gruppy v modulyarnom sluchae”, Fund. prikl. matem., 23:2 (2020), 217–229
[4] O. V. Markova, “Funktsiya dliny i matrichnye algebry”, Fund. prikl. matem., 17:6 (2012), 65–173
[5] O. V. Markova, M. A. Khrystik, “Dlina gruppovoi algebry gruppy diedra poryadka $2^k$”, Zap. nauchn. semin. POMI, 496, 2020, 169–181
[6] A. E. Guterman, M. A. Khrystik, O. V. Markova, “On the lengths of group algebras of finite Abelian groups in the modular case”, J. Algebra Appl., 21:6 (2022), 2250117–2250130 | DOI | MR
[7] A. E. Guterman, O. V. Markova, “The length of the group algebra of the group ${\mathbf Q_8}$”, New Trends in Algebra and Combinatorics, Proceedings of the 3rd International Congress in Algebra and Combinatorics, eds. K.P. Shum, E. Zelmanov, P. Kolesnikov, A. Wong, World Sci., Singapore, 2019, 106–134 | MR
[8] A. E. Guterman, O. V. Markova, M. A. Khrystik, “On the lengths of group algebras of finite Abelian groups in the semi-simple case”, J. Algebra Appl., 21:7 (2022), 2250140–2250153 | DOI | MR
[9] M. A. Khrystik, O. V. Markova, “On the length of the group algebra of the dihedral group in the semi-simple case”, Commun. Algebra, 50:5 (2022), 2223–2232 | DOI | MR | Zbl
[10] C. J. Pappacena, “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[11] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl