Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 166-176
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, the length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group over a field of characteristic $p$ is calculated. A general lower bound for the length of a commutative group algebra is proved, and in the case of the direct product of a cyclic group and a cyclic $p$-group this bound is sharp.
			
            
            
            
          
        
      @article{ZNSL_2023_524_a11,
     author = {M. A. Khrystik},
     title = {Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--176},
     publisher = {mathdoc},
     volume = {524},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/}
}
                      
                      
                    TY - JOUR AU - M. A. Khrystik TI - Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 166 EP - 176 VL - 524 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/ LA - ru ID - ZNSL_2023_524_a11 ER -
%0 Journal Article %A M. A. Khrystik %T Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 166-176 %V 524 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/ %G ru %F ZNSL_2023_524_a11
M. A. Khrystik. Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 166-176. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/