Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 166-176

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group over a field of characteristic $p$ is calculated. A general lower bound for the length of a commutative group algebra is proved, and in the case of the direct product of a cyclic group and a cyclic $p$-group this bound is sharp.
@article{ZNSL_2023_524_a11,
     author = {M. A. Khrystik},
     title = {Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {166--176},
     publisher = {mathdoc},
     volume = {524},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/}
}
TY  - JOUR
AU  - M. A. Khrystik
TI  - Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 166
EP  - 176
VL  - 524
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/
LA  - ru
ID  - ZNSL_2023_524_a11
ER  - 
%0 Journal Article
%A M. A. Khrystik
%T Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 166-176
%V 524
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/
%G ru
%F ZNSL_2023_524_a11
M. A. Khrystik. Length of the group algebra of the direct product of a cyclic group and a cyclic $p$-group in the modular case. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 166-176. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a11/