Linear operators preserving column majorization of $(0, 1)$-vectors
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 133-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper provides a characterization of linear operators preserving column majorization of $(0, 1)$-vectors. In addition, such operators are characterized explicitly in the case where they are given by special matrices, namely, $(\pm 1)$-matrices of order not exceeding $10$ or $(0, \pm 1)$-matrices of order not exceeding $5$. A number of related combinatorial-matrix-theory results are also proved.
@article{ZNSL_2023_524_a10,
     author = {P. M. Shteyner},
     title = {Linear operators preserving column majorization of $(0, 1)$-vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--165},
     year = {2023},
     volume = {524},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a10/}
}
TY  - JOUR
AU  - P. M. Shteyner
TI  - Linear operators preserving column majorization of $(0, 1)$-vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 133
EP  - 165
VL  - 524
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a10/
LA  - ru
ID  - ZNSL_2023_524_a10
ER  - 
%0 Journal Article
%A P. M. Shteyner
%T Linear operators preserving column majorization of $(0, 1)$-vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 133-165
%V 524
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a10/
%G ru
%F ZNSL_2023_524_a10
P. M. Shteyner. Linear operators preserving column majorization of $(0, 1)$-vectors. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 133-165. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a10/

[1] A. E. Guterman, P. M. Shteiner, “Lineinye otobrazheniya, sokhranyayuschie mazhorizatsiyu naborov matrits”, Vestnik SPbGU. Ser. 1. Matematika. Mekhanika. Astronomiya, 7:2 (2020), 217–229 | Zbl

[2] P. M. Shteiner, “Konvertatsiya stolbtsovoi mazhorizatsii”, Zap. nauchn. semin. POMI, 496, 2020, 195–215

[3] P. M. Shteiner, “Lineinye otobrazheniya, sokhranyayuschie nekotorye kombinatornye matrichnye mnozhestva”, Zap. nauchn. semin. POMI, 504, 2021, 181–199

[4] P. M. Shteiner, “Lineinye operatory, sokhranyayuschie i konvertiruyuschie mazhorizatsii $(0, 1)$-vektorov”, Zap. nauchn. semin. POMI, 514, 2022, 204–220

[5] T. Ando, “Majorization, doubly stochastic matrices, and comparison of eigenvalues”, Linear Algebra Appl., 118 (1989), 163–248 | DOI | MR | Zbl

[6] L. B. Beasley, S.-G. Lee, Y.-H. Lee, “A characterization of strong preservers of matrix majorization”, Linear Algebra Appl., 367 (2003), 341–346 | DOI | MR | Zbl

[7] L. B. Beasley, S.-G. Lee, “Linear operators preserving multivariate majorization”, Linear Algebra Appl., 304:1 (2000), 141–159 | DOI | MR | Zbl

[8] R. Brualdi, H. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1991 | MR | Zbl

[9] R. Brualdi, Combinatorial Matrix Classes, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2006 | MR | Zbl

[10] G. Dahl, “Matrix majorization”, Linear Algebra Appl., 288 (1999), 53–73 | DOI | MR | Zbl

[11] G. Dahl, A. Guterman, P. Shteyner, “Majorization for matrix classes”, Linear Algebra Appl., 555 (2018), 201–221 | DOI | MR | Zbl

[12] G. Dahl, A. Guterman, P. Shteyner, “Majorization for $(0,1)$-matrices”, Linear Algebra Appl., 585 (2020), 147–163 | DOI | MR | Zbl

[13] G. Frobenius, “Uber die Darstellung der endlichen Gruppen durch linear Substitutionen”, Sitz. Deutsch. Akad. Wiss., Berlin, 1897, 994–1015

[14] A. Guterman, P. Shteyner, “Linear converters of weak, directional and strong majorizations”, Linear Algebra Appl., 613 (2021), 340–346 | DOI | MR

[15] A. Guterman, P. Shteyner, “Linear operators preserving strong majorization of $(0,1)$-matrices”, Linear Algebra Appl., 658 (2023), 116–150 | DOI | MR

[16] A. M. Hasani, M. Radjabalipour, “Linear preserver of matrix majorization”, Int. J. Pure Appl. Math., 32:4 (2006), 475–482 | MR | Zbl

[17] A. M. Hasani, M. Radjabalipour, “On linear preservers of $($right$)$ matrix majorization”, Linear Algebra Appl., 423 (2007), 255–261 | DOI | MR | Zbl

[18] C.-K. Li, S. Pierce, “Linear preserver problems”, Amer. Math. Monthly, 108:7 (2001), 591–605 | DOI | MR | Zbl

[19] C.-K. Li, E. Poon, “Linear operators preserving directional majorization”, Linear Algebra Appl., 325:1 (2001), 141–146 | MR | Zbl

[20] A. W. Marshall, I. Olkin, B. C. Arnold, Inequalities: Theory of Majorization and Its Applications, second edition, Springer, New York, 2011 | MR | Zbl

[21] F. D. Martinez Peria, P. G. Massey, L. E. Silvestre, “Weak matrix majorization”, Linear Algebra Appl., 403 (2005), 343–368 | DOI | MR | Zbl

[22] S. Pierce et al., “A survey of linear preserver problems”, Linear Multilinear Algebra, 33:1–2 (1992), 1–119 | MR | Zbl