Linear operators preserving column majorization of $(0, 1)$-vectors
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 133-165

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides a characterization of linear operators preserving column majorization of $(0, 1)$-vectors. In addition, such operators are characterized explicitly in the case where they are given by special matrices, namely, $(\pm 1)$-matrices of order not exceeding $10$ or $(0, \pm 1)$-matrices of order not exceeding $5$. A number of related combinatorial-matrix-theory results are also proved.
@article{ZNSL_2023_524_a10,
     author = {P. M. Shteyner},
     title = {Linear operators preserving column majorization of $(0, 1)$-vectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--165},
     publisher = {mathdoc},
     volume = {524},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a10/}
}
TY  - JOUR
AU  - P. M. Shteyner
TI  - Linear operators preserving column majorization of $(0, 1)$-vectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 133
EP  - 165
VL  - 524
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a10/
LA  - ru
ID  - ZNSL_2023_524_a10
ER  - 
%0 Journal Article
%A P. M. Shteyner
%T Linear operators preserving column majorization of $(0, 1)$-vectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 133-165
%V 524
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a10/
%G ru
%F ZNSL_2023_524_a10
P. M. Shteyner. Linear operators preserving column majorization of $(0, 1)$-vectors. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 133-165. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a10/