Ergodicity index of the set of stochastic matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 7-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper introduces and explores the notions of ergodicity index and ergodicity exponent of a set of stochastic matrices. For the ergodicity exponent a sharp upper bound is obtained. A particular case of this bound is the well-known Paz bound. Also a connection between the ergodicity index and the Protasov–Voynov imprimitivity index is established.
@article{ZNSL_2023_524_a1,
     author = {Yu. A. Al'pin and V. S. Al'pina},
     title = {Ergodicity index of the set of stochastic matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--17},
     year = {2023},
     volume = {524},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a1/}
}
TY  - JOUR
AU  - Yu. A. Al'pin
AU  - V. S. Al'pina
TI  - Ergodicity index of the set of stochastic matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 7
EP  - 17
VL  - 524
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a1/
LA  - ru
ID  - ZNSL_2023_524_a1
ER  - 
%0 Journal Article
%A Yu. A. Al'pin
%A V. S. Al'pina
%T Ergodicity index of the set of stochastic matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 7-17
%V 524
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a1/
%G ru
%F ZNSL_2023_524_a1
Yu. A. Al'pin; V. S. Al'pina. Ergodicity index of the set of stochastic matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXXVI, Tome 524 (2023), pp. 7-17. http://geodesic.mathdoc.fr/item/ZNSL_2023_524_a1/

[1] Yu. A. Alpin, V. S. Alpina, “Kombinatornye i spektralnye svoistva polugrupp stokhasticheskikh matrits”, Zap. nauchn. semin. POMI, 439, 2015, 13–25

[2] Yu. A. Alpin, V. S. Alpina, “Novoe dokazatelstvo teoremy Protasova–Voinova o polugruppakh neotritsatelnykh matrits”, Mat. zametki, 105:6 (2019), 807–815 | DOI | Zbl

[3] R. Stenli, Perechislitelnaya kombinatorika, Mir, M., 1990

[4] T. E. Hall, M. V. Sapir, “Idempotents, regular elements and sequences from finite semigroups”, Discrete Math., 161 (1996), 151–160 | DOI | MR | Zbl

[5] A. Paz, Introduction to Probabilistic Automata, Academic Press, New York–London, 1971 | MR | Zbl

[6] A. Paz, “Definite and quasidefinite sets of stochasic matrices”, Proc. Amer. Math. Soc., 16:4 (1965), 634–641 | DOI | MR | Zbl

[7] V. Yu. Protasov, A. S. Voynov, “Sets of nonnegative matrices without positive products”, Linear Algebra Appl., 437 (2012), 749–765 | DOI | MR | Zbl

[8] E. Seneta, Non-Negative Matrices and Markov Chains, Springer, New York, 2006 | MR | Zbl