On Gauss' rings and Deuring's argument
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 159-165 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Dedekind rings multiplicativly indistinguishable with $\mathbb{Z}$ are classified. Certain inaccuracies of a previous paper are corrected. Deuring's reasoning related to the Riemann conjecture and the finiteness of the list of Gauss’ class number problem for imaginary quadratic 10-th discriminant problem are heuvristically explained.
@article{ZNSL_2023_523_a9,
     author = {A. L. Smirnov},
     title = {On {Gauss'} rings and {Deuring's} argument},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--165},
     year = {2023},
     volume = {523},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - On Gauss' rings and Deuring's argument
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 159
EP  - 165
VL  - 523
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/
LA  - ru
ID  - ZNSL_2023_523_a9
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T On Gauss' rings and Deuring's argument
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 159-165
%V 523
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/
%G ru
%F ZNSL_2023_523_a9
A. L. Smirnov. On Gauss' rings and Deuring's argument. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 159-165. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/

[1] A. L. Smirnov, “O slozheniyakh na multiplikativnom monoide tselykh chisel”, Zap. nauchn. semin. POMI, 502, 2021, 139–151

[2] N. Durov, New Approach to Arakelov Geometry, 16 Apr 2007, arXiv: 0704.2030v1 [math AG]

[3] D. Goldfeld, “Gauss' class number problem for imaginary quadratic fields”, Bull. of AMS, 13:1, July (1985) | DOI | MR | Zbl

[4] I. R. Shafarevich, “Problema desyatogo diskriminanta”, Algebra i analiz, 25:4 (2013), 260–277

[5] R. E. MacRae, “On Unique Factorization in Certain Rings of Algebraic Functions”, J. of Algebra, 17 (1971), 243–261 | DOI | MR | Zbl

[6] M. L. Madan, C. S. Queen, “Algebraic Function Fields of class number one”, Acta Arithmetica, XX (1972), 424–431 | MR

[7] J. R. C. Leitzel, M. L. Madan, C. S. Queen, “Algebraic Function Fields with Small Class Number”, J. Number Theory, 7 (1975), 11–27 | DOI | MR | Zbl

[8] C. Stirpe, “A counterexample to ‘Algebraic function fields with small class number’”, J. Number Theory, 143 (2014), 402–404 | DOI | MR | Zbl

[9] P. Mercuri, C. Stirpe, Classification of algebraic function fields with class number one, 2014, arXiv: 1406.5365v3 | MR

[10] Q. Shen, S. Shi, “Function fields of class number one”, NY Number Theory Conference, 2015 | MR

[11] M. Deuring, “Imaginare quadratische Zahlkörper mit der Klassenzahl 1”, Math. Z., 37 (1933), 405–415 | DOI | MR | Zbl

[12] E. Landau, “Über die Klassenzahl imaginär-quadratische Zahlkörper”, Gött. Nachr, 1918, 285–295