On Gauss' rings and Deuring's argument
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 159-165

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dedekind rings multiplicativly indistinguishable with $\mathbb{Z}$ are classified. Certain inaccuracies of a previous paper are corrected. Deuring's reasoning related to the Riemann conjecture and the finiteness of the list of Gauss’ class number problem for imaginary quadratic 10-th discriminant problem are heuvristically explained.
@article{ZNSL_2023_523_a9,
     author = {A. L. Smirnov},
     title = {On {Gauss'} rings and {Deuring's} argument},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--165},
     publisher = {mathdoc},
     volume = {523},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/}
}
TY  - JOUR
AU  - A. L. Smirnov
TI  - On Gauss' rings and Deuring's argument
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 159
EP  - 165
VL  - 523
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/
LA  - ru
ID  - ZNSL_2023_523_a9
ER  - 
%0 Journal Article
%A A. L. Smirnov
%T On Gauss' rings and Deuring's argument
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 159-165
%V 523
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/
%G ru
%F ZNSL_2023_523_a9
A. L. Smirnov. On Gauss' rings and Deuring's argument. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 159-165. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/