On Gauss' rings and Deuring's argument
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 159-165
Voir la notice de l'article provenant de la source Math-Net.Ru
The Dedekind rings multiplicativly indistinguishable with $\mathbb{Z}$ are classified. Certain inaccuracies of a previous paper are corrected. Deuring's reasoning related to the Riemann conjecture and the finiteness of the list of Gauss’ class number problem for imaginary quadratic 10-th discriminant problem are heuvristically explained.
@article{ZNSL_2023_523_a9,
author = {A. L. Smirnov},
title = {On {Gauss'} rings and {Deuring's} argument},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--165},
publisher = {mathdoc},
volume = {523},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/}
}
A. L. Smirnov. On Gauss' rings and Deuring's argument. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 159-165. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a9/