Bundles on $\mathbb{P}^1_\mathbb{Z}$ of rank $3$ and non-degenerate sections of bundles of rank $2$
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 135-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A classification of rank $3$ bundles with a trivial generic fiber and simple jumps is obtained. Using the resulting classification, it is proved that two bundles $E$ and $F$ of rank $2$ with a trivial generic fiber and simple jumps with equal discriminants are stably isomorphic, that is, $E\oplus\mathcal{O}\simeq F\oplus\mathcal{O}$. In the second part of the work it is shown that for a rank $2$ bundle with a trivial generic fiber there are non-degenerate sections of all degrees higher than minimal one.
@article{ZNSL_2023_523_a7,
     author = {V. M. Polyakov},
     title = {Bundles on $\mathbb{P}^1_\mathbb{Z}$ of rank $3$ and non-degenerate sections of bundles of rank $2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {135--146},
     year = {2023},
     volume = {523},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a7/}
}
TY  - JOUR
AU  - V. M. Polyakov
TI  - Bundles on $\mathbb{P}^1_\mathbb{Z}$ of rank $3$ and non-degenerate sections of bundles of rank $2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 135
EP  - 146
VL  - 523
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a7/
LA  - ru
ID  - ZNSL_2023_523_a7
ER  - 
%0 Journal Article
%A V. M. Polyakov
%T Bundles on $\mathbb{P}^1_\mathbb{Z}$ of rank $3$ and non-degenerate sections of bundles of rank $2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 135-146
%V 523
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a7/
%G ru
%F ZNSL_2023_523_a7
V. M. Polyakov. Bundles on $\mathbb{P}^1_\mathbb{Z}$ of rank $3$ and non-degenerate sections of bundles of rank $2$. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 135-146. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a7/

[1] A. L. Smirnov, “On filtrations of vector bundles over ${\mathbb P}^1_{\mathbb Z}$”, Arithmetic and Geometry, London Math. Soc. Lect. Note Series, 420, Cambridge Univ. Press, 2015, 436–457 | MR | Zbl

[2] V. M. Polyakov, “Konechnost chisla klassov vektornykh rassloenii na ${\mathbb P}^1_{\mathbb Z}$ s podskokami vysoty $2$”, Zap. nauchn. semin. POMI, 511, 2022, 137–160

[3] A. L. Smirnov, “O stepenyakh nevyrozhdennykh sechenii”, Zap. nauchn. semin. POMI, 511, 2022, 171–180

[4] A. L. Smirnov, S. S. Yakovenko, “Postroenie lineinoi filtratsii dlya rassloenii ranga $2$ na ${\mathbb P}^1_{\mathbb Z}$”, Matem. sb., 208:4 (2017), 111–128 | DOI | Zbl

[5] Ch. C. Hanna, “Subbundles of vector bundles on the projective line”, J. Algebra, 52:2 (1978), 322–327 | DOI | MR | Zbl