Bundles on $\mathbb{P}^1_\mathbb{Z}$ of rank $3$ and non-degenerate sections of bundles of rank $2$
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 135-146
Voir la notice de l'article provenant de la source Math-Net.Ru
A classification of rank $3$ bundles with a trivial generic fiber and simple jumps is obtained. Using the resulting classification, it is proved that two bundles $E$ and $F$ of rank $2$ with a trivial generic fiber and simple jumps with equal discriminants are stably isomorphic, that is, $E\oplus\mathcal{O}\simeq F\oplus\mathcal{O}$. In the second part of the work it is shown that for a rank $2$ bundle with a trivial generic fiber there are non-degenerate sections of all degrees higher than minimal one.
@article{ZNSL_2023_523_a7,
author = {V. M. Polyakov},
title = {Bundles on $\mathbb{P}^1_\mathbb{Z}$ of rank $3$ and non-degenerate sections of bundles of rank $2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--146},
publisher = {mathdoc},
volume = {523},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a7/}
}
TY - JOUR
AU - V. M. Polyakov
TI - Bundles on $\mathbb{P}^1_\mathbb{Z}$ of rank $3$ and non-degenerate sections of bundles of rank $2$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2023
SP - 135
EP - 146
VL - 523
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a7/
LA - ru
ID - ZNSL_2023_523_a7
ER -
V. M. Polyakov. Bundles on $\mathbb{P}^1_\mathbb{Z}$ of rank $3$ and non-degenerate sections of bundles of rank $2$. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 135-146. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a7/