Circle homeomorphisms and continued fractions
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 39-52

Voir la notice de l'article provenant de la source Math-Net.Ru

For an orientation preserving homeomorphism $f: \mathbb{T} \longrightarrow \mathbb{T}$ of the circle $\mathbb{T}=\mathbb{R}/ \mathbb{Z}$ with an irrational rotation number $\alpha_{f}$, we build karyon tilings $\mathcal{T}^{l}$ of levels $l=0,1,2,\ldots$ that are quasi-invariant with respect to $f$ and have minimal kernels. These tilings are used to obtain approximations for the rotation number $\alpha_{f}$ by continued fractions.
@article{ZNSL_2023_523_a3,
     author = {V. G. Zhuravlev},
     title = {Circle homeomorphisms and continued fractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--52},
     publisher = {mathdoc},
     volume = {523},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Circle homeomorphisms and continued fractions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 39
EP  - 52
VL  - 523
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/
LA  - ru
ID  - ZNSL_2023_523_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Circle homeomorphisms and continued fractions
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 39-52
%V 523
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/
%G ru
%F ZNSL_2023_523_a3
V. G. Zhuravlev. Circle homeomorphisms and continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 39-52. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/