Circle homeomorphisms and continued fractions
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 39-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an orientation preserving homeomorphism $f: \mathbb{T} \longrightarrow \mathbb{T}$ of the circle $\mathbb{T}=\mathbb{R}/ \mathbb{Z}$ with an irrational rotation number $\alpha_{f}$, we build karyon tilings $\mathcal{T}^{l}$ of levels $l=0,1,2,\ldots$ that are quasi-invariant with respect to $f$ and have minimal kernels. These tilings are used to obtain approximations for the rotation number $\alpha_{f}$ by continued fractions.
@article{ZNSL_2023_523_a3,
     author = {V. G. Zhuravlev},
     title = {Circle homeomorphisms and continued fractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--52},
     year = {2023},
     volume = {523},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Circle homeomorphisms and continued fractions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 39
EP  - 52
VL  - 523
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/
LA  - ru
ID  - ZNSL_2023_523_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Circle homeomorphisms and continued fractions
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 39-52
%V 523
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/
%G ru
%F ZNSL_2023_523_a3
V. G. Zhuravlev. Circle homeomorphisms and continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 39-52. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/

[1] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | DOI | MR | Zbl

[2] Z. Nitetski, Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975

[3] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[4] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999

[5] Khinchin A. Ya., Tsepnye drobi, chetvertoe izd., Nauka, M., 1978

[6] V. G. Zhuravlev, A. V. Shutov, Derivaties of circle rotations and similarity of orbits, Preprint Series No 62, Max-Planck-Institut für Mathematik, 2004, 11 pp. | MR