Circle homeomorphisms and continued fractions
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 39-52
Voir la notice de l'article provenant de la source Math-Net.Ru
For an orientation preserving homeomorphism $f: \mathbb{T} \longrightarrow \mathbb{T}$ of the circle $\mathbb{T}=\mathbb{R}/ \mathbb{Z}$ with an irrational rotation number $\alpha_{f}$, we build karyon tilings $\mathcal{T}^{l}$ of levels $l=0,1,2,\ldots$ that are quasi-invariant with respect to $f$ and have minimal kernels. These tilings are used to obtain approximations for the rotation number $\alpha_{f}$ by continued fractions.
@article{ZNSL_2023_523_a3,
author = {V. G. Zhuravlev},
title = {Circle homeomorphisms and continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {39--52},
publisher = {mathdoc},
volume = {523},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/}
}
V. G. Zhuravlev. Circle homeomorphisms and continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 39-52. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/