Circle homeomorphisms and continued fractions
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 39-52
Cet article a éte moissonné depuis la source Math-Net.Ru
For an orientation preserving homeomorphism $f: \mathbb{T} \longrightarrow \mathbb{T}$ of the circle $\mathbb{T}=\mathbb{R}/ \mathbb{Z}$ with an irrational rotation number $\alpha_{f}$, we build karyon tilings $\mathcal{T}^{l}$ of levels $l=0,1,2,\ldots$ that are quasi-invariant with respect to $f$ and have minimal kernels. These tilings are used to obtain approximations for the rotation number $\alpha_{f}$ by continued fractions.
@article{ZNSL_2023_523_a3,
author = {V. G. Zhuravlev},
title = {Circle homeomorphisms and continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {39--52},
year = {2023},
volume = {523},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/}
}
V. G. Zhuravlev. Circle homeomorphisms and continued fractions. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 39-52. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a3/
[1] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 71:2 (2007), 89–122 | DOI | MR | Zbl
[2] Z. Nitetski, Vvedenie v differentsialnuyu dinamiku, Mir, M., 1975
[3] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR
[4] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[5] Khinchin A. Ya., Tsepnye drobi, chetvertoe izd., Nauka, M., 1978
[6] V. G. Zhuravlev, A. V. Shutov, Derivaties of circle rotations and similarity of orbits, Preprint Series No 62, Max-Planck-Institut für Mathematik, 2004, 11 pp. | MR