Bounded generation of relative subgroups in Chevalley groups
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 7-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of bounded elementary generation is now completely settled for all Chevalley groups of rank $\ge 2$ over arbitrary Dedekind rings $R$ of arithmetic type with the fraction field $K$, with uniform bounds. Namely, for every reduced irreducible root system $\Phi$ of rank $\ge 2$ there exists a uniform bound $L=L(\Phi)$ such that the simply connected Chevalley groups $\mathrm G(\Phi,R)$ have elementary width $\le L$ for all Dedekind rings of arithmetic type, [18]. It is natural to ask, whether similar result holds for the relative elementary groups $E(\Phi,R,I)$, where $I\unlhd R$. Mating the usual rewriting argument, already invoked in this context by Tavgen [28], with the universal localisation by Stepanov [25], we can give a very short proof that this is indeed the case. In other words, the width of $E(\Phi,R,I)$ in elementary conjugates $z_{\alpha}(\xi,\zeta)=x_{-\alpha}(\zeta)x_{\alpha}(\xi)x_{-\alpha}(-\zeta)$, where $\alpha\in\Phi$, $\xi\in I$, $\zeta\in R$, is indeed bounded by some constant $M=M(\Phi,R,I)$. However, the resulting bounds $M$ are not uniform, they depend on the pair $(R,I)$.
@article{ZNSL_2023_523_a1,
     author = {N. A. Vavilov},
     title = {Bounded generation of relative subgroups in {Chevalley} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--18},
     year = {2023},
     volume = {523},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Bounded generation of relative subgroups in Chevalley groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 7
EP  - 18
VL  - 523
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a1/
LA  - en
ID  - ZNSL_2023_523_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Bounded generation of relative subgroups in Chevalley groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 7-18
%V 523
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a1/
%G en
%F ZNSL_2023_523_a1
N. A. Vavilov. Bounded generation of relative subgroups in Chevalley groups. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 7-18. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a1/

[1] A. Bak, “Non-abelian $\mathrm{K}$-theory: The nilpotent class of $\mathrm{K}_1$ and general stability”, K–Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[2] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[3] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ ($n\ge 3$) and $\mathrm{Sp}_{2n}$ ($n\ge 2)$”, Publ. Math. Inst. Hautes Etudes Sci., 33 (1967), 59–137 | DOI | MR | Zbl

[4] M. A. Buryakov, N. A. Vavilov, “Relative decomposition of transvections: explicit bounds”, Zap. Nauchn. Semin. POMI, 513, 2022, 9–21 | MR

[5] D. Carter, G. Keller, “Bounded elementary generation of $\mathrm{SL}_n({\mathcal O})$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl

[6] D. Carter, G. E. Keller, E. Paige, Bounded expressions in $\mathrm{SL}(n,A)$, Univ. Virginia, 1985, 46 pp.

[7] G. Cooke, P. J. Weinberger, “On the construction of division chains in algebraic number rings, with applications to $\mathrm{SL}_2$”, Commun. Algebra, 3 (1975), 481–524 | DOI | MR | Zbl

[8] P. Gvozdevsky, “Width of $\mathrm{SL}(n,O_S,I)$”, Commun. Algebra, 51:4 (2023), 1581–1593 | DOI | MR | Zbl

[9] R. Hazrat, A. Stepanov, N. Vavilov, Zuhong Zhang, “Commutator width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl

[10] R. Hazrat, N. Vavilov, “$K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[11] R. Hazrat, N. Vavilov, Z. Zhang, “Relative commutator calculus in Chevalley groups”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl

[12] R. Hazrat, N. Vavilov, Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinb. Math. Soc. (2), 59:2 (2016), 393–410 | DOI | MR | Zbl

[13] R. Hazrat, N. Vavilov, Zuhong Zhang, “The commutators of classical groups”, J. Math. Sci., 222:4 (2017), 466–515 | DOI | MR | Zbl

[14] B. W. Jordan, Y. Zaytman, “On the bounded generation of arithmetic $\mathrm{SL}_2$”, Proc. Natl. Acad. Sci. USA, 116 (2019), 18880–18882 | DOI | MR | Zbl

[15] B. Kunyavskiĭ, A. Lavrenov, E. Plotkin, N. Vavilov, Bounded generation of Steinberg groups over Dedekind rings of arithmetic type, 2023, 24 pp., arXiv: 2204.10951 | Zbl

[16] B. Kunyavskiĭ, D. W. Morris, A. S. Rapinchuk, Bounded elementary generation of $\mathrm{SL}_2$: approaching the end, in preparation

[17] B. Kunyavskiĭ, E. Plotkin, N. Vavilov, “Bounded generation and commutator width of Chevalley and Kac–Moody groups: function case”, European J. Math., 9:53 (2023), 1–64 | MR

[18] B. Kunyavskiĭ, E. Plotkin, N. Vavilov, Uniform bounded generation of Chevalley over Dedekind rings of arithmetic type, in preparation

[19] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. Ec. Norm. Sup., 2 (1969), 1–62 | DOI | MR | Zbl

[20] A. Morgan, A. Rapinchuk, B. Sury, “Bounded generation of $\mathrm{SL}_2$ over rings of $S$-integers with infinitely many units”, Algebra Number Theory, 12:8 (2018), 1949–1974 | DOI | MR | Zbl

[21] D. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl

[22] B. Nica, “On bounded elementary generation for $\mathrm{SL}_n$ over polynomial rings”, Israel J. Math., 225 (2018), 403–410 | DOI | MR | Zbl

[23] S. Sinchuk, A. Smolensky, “Decompositions of congruence subgroups of Chevalley groups”, Intern. J. Algebra Comput., 28:6 (2018), 935–958 | DOI | MR | Zbl

[24] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[25] A. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl

[26] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm{K}$-Theory, 19:2 (2000), 109–153 | DOI | MR | Zbl

[27] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math., 185 (2011), 253–276 | DOI | MR | Zbl

[28] O. Tavgen, “Bounded generation of Chevalley groups over rings of algebraic $S$-integers”, Izv. Akad. Nauk SSSR Ser. Mat., 54:1 (1990), 97–122 | MR | Zbl

[29] O. I. Tavgen, “Bounded generation of normal and twisted Chevalley groups over the rings of $S$-integers”, Contemp. Math., 131, no. 1, 1992, 409–421 | DOI | MR | Zbl

[30] O. I. Tavgen, “Bounded generation of congruence-subgroups of Chevalley groups over rings of algebraic integers”, Dokl. Akad. Nauk Belarusi, 37:5 (1993), 12–15 | MR | Zbl

[31] J. Tits, “Systèmes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris, Sér A, 283 (1976), 693–695 | MR

[32] A. Trost, Bounded generation by root elements for Chevalley groups defined over rings of integers of function fields with an application in strong boundedness, arXiv: 2108.12254

[33] A. Trost, Elementary bounded generation for $\mathrm{SL}_n$ for global function fields and $n\geq3$, arXiv: 2206.13958

[34] K. M. Tulenbaev, N. A. Vavilov, Width of $\mathrm{SL}(n,O_S,I)$ vs width of $\mathrm{SL}(n,I)$, in preparation, 2023 | Zbl

[35] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., II. Ser., 38:1–2 (1986), 219–230 | MR | Zbl

[36] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., London et al, 1991, 219–335 | MR | Zbl

[37] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings: I. Elementary calculations”, Acta Applicandae Mathematica, 45 (1996), 73–113 | DOI | MR | Zbl

[38] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings I. Generalities”, J. Math. Sci., 188:5 (2013), 490–550 | DOI | MR | Zbl

[39] N. Vavilov, Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups II”, Proc. Edinburgh Math. Soc., 63:2 (2020), 497–511 | DOI | MR | Zbl

[40] N. Vavilov, Z. Zhang, “Commutators of elementary subgroups: curiouser and curiouser”, Transformation Groups, 28:1 (2023), 487–504 | DOI | MR | Zbl