Bounded generation of relative subgroups in Chevalley groups
Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 7-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of bounded elementary generation is now completely settled for all Chevalley groups of rank $\ge 2$ over arbitrary Dedekind rings $R$ of arithmetic type with the fraction field $K$, with uniform bounds. Namely, for every reduced irreducible root system $\Phi$ of rank $\ge 2$ there exists a uniform bound $L=L(\Phi)$ such that the simply connected Chevalley groups $\mathrm G(\Phi,R)$ have elementary width $\le L$ for all Dedekind rings of arithmetic type, [18]. It is natural to ask, whether similar result holds for the relative elementary groups $E(\Phi,R,I)$, where $I\unlhd R$. Mating the usual rewriting argument, already invoked in this context by Tavgen [28], with the universal localisation by Stepanov [25], we can give a very short proof that this is indeed the case. In other words, the width of $E(\Phi,R,I)$ in elementary conjugates $z_{\alpha}(\xi,\zeta)=x_{-\alpha}(\zeta)x_{\alpha}(\xi)x_{-\alpha}(-\zeta)$, where $\alpha\in\Phi$, $\xi\in I$, $\zeta\in R$, is indeed bounded by some constant $M=M(\Phi,R,I)$. However, the resulting bounds $M$ are not uniform, they depend on the pair $(R,I)$.
@article{ZNSL_2023_523_a1,
     author = {N. A. Vavilov},
     title = {Bounded generation of relative subgroups in {Chevalley} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {523},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a1/}
}
TY  - JOUR
AU  - N. A. Vavilov
TI  - Bounded generation of relative subgroups in Chevalley groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 7
EP  - 18
VL  - 523
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a1/
LA  - en
ID  - ZNSL_2023_523_a1
ER  - 
%0 Journal Article
%A N. A. Vavilov
%T Bounded generation of relative subgroups in Chevalley groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 7-18
%V 523
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a1/
%G en
%F ZNSL_2023_523_a1
N. A. Vavilov. Bounded generation of relative subgroups in Chevalley groups. Zapiski Nauchnykh Seminarov POMI, Algebra and number theory. Part 6, Tome 523 (2023), pp. 7-18. http://geodesic.mathdoc.fr/item/ZNSL_2023_523_a1/