Orbits of vectors in some representations. III
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 152-163

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi$ be a root system of type $E_6$, $E_7$, or $E_8$. Let $K$ be a field of characteristic $2$. Let $\delta$ be the maximal root of $\Phi$ and set $\Phi_0 = \{\alpha\in\Phi; \delta\perp\alpha\}$. The orbits of the group $G_{\mathrm sc}(\Phi_0, K)$ acting on the set $\langle e_\alpha; \angle(\alpha, \delta) = \pi/3\rangle$ are described.
@article{ZNSL_2023_522_a8,
     author = {I. M. Pevzner},
     title = {Orbits of vectors in some representations. {III}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--163},
     publisher = {mathdoc},
     volume = {522},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a8/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Orbits of vectors in some representations. III
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 152
EP  - 163
VL  - 522
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a8/
LA  - ru
ID  - ZNSL_2023_522_a8
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Orbits of vectors in some representations. III
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 152-163
%V 522
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a8/
%G ru
%F ZNSL_2023_522_a8
I. M. Pevzner. Orbits of vectors in some representations. III. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 152-163. http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a8/