Orbits of vectors in some representations. II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 125-151

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Phi$ be a root system of type $A_l$ or $D_l$. Let $K$ be a field of characteristic other than $2$. Let $\delta$ be the maximal root of $\Phi$ and $\Phi_0 = \{\alpha\in\Phi; \delta\perp\alpha\}$. The orbits of the group $G_{\mathrm sc}(\Phi_0, K)$ acting on the set $\langle e_\alpha; \angle(\alpha, \delta) = \pi/3\rangle$ are described.
@article{ZNSL_2023_522_a7,
     author = {I. M. Pevzner},
     title = {Orbits of vectors in some representations. {II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--151},
     publisher = {mathdoc},
     volume = {522},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a7/}
}
TY  - JOUR
AU  - I. M. Pevzner
TI  - Orbits of vectors in some representations. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 125
EP  - 151
VL  - 522
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a7/
LA  - ru
ID  - ZNSL_2023_522_a7
ER  - 
%0 Journal Article
%A I. M. Pevzner
%T Orbits of vectors in some representations. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 125-151
%V 522
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a7/
%G ru
%F ZNSL_2023_522_a7
I. M. Pevzner. Orbits of vectors in some representations. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 125-151. http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a7/