Another presentation of orthogonal Steinberg groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 46-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the pro-group approach to show that $\mathrm{StO}(M, q)$ admits van der Kallen’s “another presentation”, where $M$ is a module over a commutative ring with sufficiently isotropic quadratic form $q$. Moreover, we construct an analog of ESD-transvections in orthogonal Steinberg pro-groups under some assumptions on their parameters.
@article{ZNSL_2023_522_a2,
     author = {E. Yu. Voronetsky},
     title = {Another presentation of orthogonal {Steinberg} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--59},
     publisher = {mathdoc},
     volume = {522},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a2/}
}
TY  - JOUR
AU  - E. Yu. Voronetsky
TI  - Another presentation of orthogonal Steinberg groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 46
EP  - 59
VL  - 522
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a2/
LA  - ru
ID  - ZNSL_2023_522_a2
ER  - 
%0 Journal Article
%A E. Yu. Voronetsky
%T Another presentation of orthogonal Steinberg groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 46-59
%V 522
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a2/
%G ru
%F ZNSL_2023_522_a2
E. Yu. Voronetsky. Another presentation of orthogonal Steinberg groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 46-59. http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a2/