Another presentation of orthogonal Steinberg groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 46-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We use the pro-group approach to show that $\mathrm{StO}(M, q)$ admits van der Kallen’s “another presentation”, where $M$ is a module over a commutative ring with sufficiently isotropic quadratic form $q$. Moreover, we construct an analog of ESD-transvections in orthogonal Steinberg pro-groups under some assumptions on their parameters.
@article{ZNSL_2023_522_a2,
     author = {E. Yu. Voronetsky},
     title = {Another presentation of orthogonal {Steinberg} groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--59},
     year = {2023},
     volume = {522},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a2/}
}
TY  - JOUR
AU  - E. Yu. Voronetsky
TI  - Another presentation of orthogonal Steinberg groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 46
EP  - 59
VL  - 522
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a2/
LA  - ru
ID  - ZNSL_2023_522_a2
ER  - 
%0 Journal Article
%A E. Yu. Voronetsky
%T Another presentation of orthogonal Steinberg groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 46-59
%V 522
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a2/
%G ru
%F ZNSL_2023_522_a2
E. Yu. Voronetsky. Another presentation of orthogonal Steinberg groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 46-59. http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a2/

[1] E. Yu. Voronetskii, Mladshaya $\mathrm{K}$-teoriya nechetnykh unitarnykh grupp, kandidatskaya dissertatsiya, SPbGU, Sankt-Peterburg, Rossiya, 2022

[2] V. A. Petrov, “Nechetnye unitarnye gruppy”, Zap. nauchn. semin. POMI, 305, 2003, 195–225

[3] M. S. Tulenbaev, “Multiplikator Shura gruppy elementarnykh matrits konechnogo poryadka”, Zap. nauchn. semin. LOMI, 86 (1979), 162–169 | MR | Zbl

[4] S. Böge, “Steinberggruppen von orthogonalen Gruppen”, J. reine angew. Math., 494 (1998), 219–236 | DOI | MR | Zbl

[5] A. Lavrenov, “Another presentation for symplectic Steinberg groups”, J. Pure Appl. Alg., 219:9 (2015), 3755–3780 | DOI | MR | Zbl

[6] A. Lavrenov, S. Sinchuk, “On centrality of even orthogonal $\mathrm{K}_2$”, J. Pure Appl. Alg., 221:5 (2017), 1134–1145 | DOI | MR | Zbl

[7] A. Lavrenov, S. Sinchuk, E. Voronetsky, Centrality of $\mathrm{K}_2$ for Chevalley groups: a pro-group approach, 2020, arXiv: 2009.03999

[8] B. A. Magurn, W. van der Kallen, L. N. Vaserstein, “Absolute stable rank and Witt cancellation for noncommutative rings”, Invent. Math., 91 (1988), 525–542 | DOI | MR | Zbl

[9] S. Sinchuk, “On centrality of $\mathrm{K}_2$ for Chevalley groups of type $\mathrm{E}_l$”, J. Pure Appl. Alg., 220:2 (2016), 857–875 | DOI | MR | Zbl

[10] W. van der Kallen, “Another presentation for Steinberg groups”, Indag. Math., 80:4 (1977), 304–312 | DOI | MR | Zbl

[11] E. Voronetsky, “Centrality of $\mathrm{K}_2$-functor revisited”, J. Pure Appl. Alg., 225:4 (1065) | DOI | MR

[12] E. Voronetsky, Centrality of odd unitary $\mathrm{K}_2$-functor, 2020, arXiv: 2005.02926 | MR

[13] E. Voronetsky, “Injective stability for odd unitary $\mathrm{K}_1$”, J. Group Theory, 23:5 (2020) | DOI | MR | Zbl

[14] M. Wendt, “On homotopy invariance for homology of rank two groups”, J. Pure Appl. Alg., 216:10 (2012), 2291–2301 | DOI | MR | Zbl