Subgroups generatred by a pair of $2$-tori in $\mathrm{GL}(5,K)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 8-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A goal of the paper is to describe the orbits of the general linear group $\mathrm{GL}(n,K)$ over a field $K$, acting by simultaneous conjugation on pairs of $2$-tori, i.e., subgroups conjugate to the diagonal subgroup $\big\{\mathrm{diag}(\varepsilon,\varepsilon,1,{\ldots},1), \varepsilon\in K^*\big\}$, and identify their spans. For the easier case of $1$-tori similar results were previously obtained by the first author, A. Cohen, H. Vuypers and H. Sterk. The present paper is the second one pertaining to this case, in the first one a reduction theorem is proved establishing that a pair of $2$-tori is conjugate to such a pair in $\mathrm{GL}(6,K)$, and a classification of such pairs that cannot be embedded in $\mathrm{GL}(5,K)$ is given. Here, the orbits and spans of $2$-tori in $\mathrm{GL}(5,K)$, that cannot be embedded in $\mathrm{GL}(4,K)$ are described. A typical qualitatove corollary of the obtained results asserts that for $|K|\ge 7$ every non-diagonalisable subgroup spanned by $2$-tori contains unipotent elements of residue $1$ or $2$.
@article{ZNSL_2023_522_a1,
     author = {N. Vavilov and Vl. Nesterov},
     title = {Subgroups generatred by a pair of $2$-tori in $\mathrm{GL}(5,K)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {8--45},
     year = {2023},
     volume = {522},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a1/}
}
TY  - JOUR
AU  - N. Vavilov
AU  - Vl. Nesterov
TI  - Subgroups generatred by a pair of $2$-tori in $\mathrm{GL}(5,K)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 8
EP  - 45
VL  - 522
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a1/
LA  - ru
ID  - ZNSL_2023_522_a1
ER  - 
%0 Journal Article
%A N. Vavilov
%A Vl. Nesterov
%T Subgroups generatred by a pair of $2$-tori in $\mathrm{GL}(5,K)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 8-45
%V 522
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a1/
%G ru
%F ZNSL_2023_522_a1
N. Vavilov; Vl. Nesterov. Subgroups generatred by a pair of $2$-tori in $\mathrm{GL}(5,K)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 39, Tome 522 (2023), pp. 8-45. http://geodesic.mathdoc.fr/item/ZNSL_2023_522_a1/

[1] Z. I. Borevich, “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauchn. semin. LOMI, 64, 1976, 12–29 | Zbl

[2] Z. I. Borevich, N. A. Vavilov, “Podgruppy polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschie gruppu diagonalnykh matrits”, Tr. Mat. in-ta AN SSSR, 148, 1978, 43–57 | Zbl

[3] N. A. Vavilov, “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Trudy Leningr. Mat. Obsch., 1, 1990, 64–109

[4] N. A. Vavilov, “Geometriya $1$-torov v $\mathrm{GL}_n$”, Algebra i analiz, 19:3 (2007), 120–151

[5] N. A. Vavilov, “Vesovye elementy grupp Shevalle”, Algebra i analiz, 20:1 (2008), 34–85

[6] N. A. Vavilov, V. V. Nesterov, “Geometriya mikrovesovykh torov”, Vladikavkazskii mat. zhurnal, 10:1 (2008), 10–23 | MR | Zbl

[7] V. V. Vavilov, V. V. Nesterov, Pary 2-torov v $\mathrm{GL}(4,K)$, in preparation, 2023

[8] N. A. Vavilov, I. M. Pevzner, “Troiki dlinnykh kornevykh podgrupp”, Zap. nauchn. semin. POMI, 343, 2007, 54–83

[9] N. A. Vavilov, A. A. Semenov, “Razlozhenie Bryua dlinnykh kornevykh torov v gruppakh Shevavlle”, Zap. nauch. semin. LOMI, 175, 1989, 12–23 | Zbl

[10] N. A. Vavilov, A. A. Semenov, “Dlinnye kornevye poluprostye elementy v gruppakh Shevalle”, Dokl. Akad. nauk, ser. Matematika, 338:6 (1994), 725–727 | Zbl

[11] N. A. Vavilov, A. A. Semenov, “Dlinnye kornevye tory v gruppakh Shevalle”, Algebra i analiz, 24:3 (2012), 22–83

[12] V. V. Nesterov, “Porozhdenie par korotkikh kornevykh podgrupp v gruppakh Shevalle”, Algebra i analiz, 16:6 (2004), 172–208

[13] V. V. Nesterov, “Teoremy reduktsii dlya troek korotkikh kornevykh podgrupp v gruppakh Shevalle”, Zap. nauch. semin. POMI, 443, 2016, 437–452

[14] V. V. Nesterov, “Izvlechenie malorangovykh unipotentnykh elementov v $\mathrm{GL}(4,K)$”, Zapiski nauch. semin. POMI, 492, 2020, 134–148

[15] B. Blum-Smith, “A rotation group whose subspace arrangement is not from a real reflection group”, Linear Algebra Appl., 581 (2019), 405–412 | DOI | MR | Zbl

[16] A. M. Cohen, H. Cuypers, H. Sterk, “Linear groups generated by reflection tori”, Canad. J. Math., 51:6 (1999), 1149–1174 | DOI | MR | Zbl

[17] A. J. Hahn, O. T. O'Meara, The classical groups and K-theory, Springer, Berlin et al, 1989 | MR | Zbl

[18] Ch. Lange, “Characterization of finite groups generated by reflections and rotations”, J. Topol., 9:4 (2016), 1109–1129 | DOI | MR | Zbl

[19] Ch. Lange, M. A. Mikhailova, “Classification of finite groups generated by reflections and rotations”, Transform. Groups, 21:4 (2016), 1155–1201 | DOI | MR | Zbl

[20] V. V. Nesterov, N. A. Vavilov, “Pairs of microweight tori in $\mathrm{GL}_n$”, Chebyshevskii sbornik, 21:3 (2020), 257–266 | MR