Distribution of natural oscillations models in a plate imbedded into absolutely rigid half-space
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 154-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study oscillations of a thin isotropic cylindrical plate imbedded into a notch and attached to its absolutely rigid surface. We demonstrate that only in the case of sufficiently deep notch, in particular, completely submerged plate, its natural oscillations are described by the two-dimensional model, that is, elasticity theory plane problem in the longitudinal cross-section with the Dirichlet conditions at its boundary. In other cases we establish the exponential decay of eigenmodes at a distance of the lateral side of the plate. Moreover, a formal asymptotic analysis leads to other models of reduced dimension in the low-frequency range of the spectrum, namely multifarious ordinary differential equations while the corresponding modes of natural oscillations concentrate near the whole lateral side or some points on it.
@article{ZNSL_2023_521_a9,
     author = {S. A. Nazarov},
     title = {Distribution of natural oscillations models in a plate imbedded into absolutely rigid half-space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--199},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Distribution of natural oscillations models in a plate imbedded into absolutely rigid half-space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 154
EP  - 199
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a9/
LA  - ru
ID  - ZNSL_2023_521_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Distribution of natural oscillations models in a plate imbedded into absolutely rigid half-space
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 154-199
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a9/
%G ru
%F ZNSL_2023_521_a9
S. A. Nazarov. Distribution of natural oscillations models in a plate imbedded into absolutely rigid half-space. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 154-199. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a9/

[1] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988

[2] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[3] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[4] V. A. Kondratev, O. A. Oleinik, “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, Uspekhi matem. nauk, 43:5 (1988), 55–98 | MR

[5] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[6] S. A. Nazarov, “Dvumernye asimptoticheskie modeli tonkikh tsilindricheskikh uprugikh prokladok”, Differentsialnye uravneniya, 58:12 (2022), 1666–1682 | Zbl

[7] G. R. Kirchhoff, “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe”, J. Reine Angew. Math., 40 (1850), 51–88 | MR

[8] G. R. Kirchhoff, “Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes”, J. Reine Angew. Math., 56 (1859), 285–313 | MR

[9] I. S. Zorin, S. A. Nazarov, “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikladnaya matem. i mekhanika, 53:4 (1989), 642–650 | MR | Zbl

[10] I. S. Zorin, S. A. Nazarov, “Dvuchlennaya asimptotika resheniya zadachi o prodolnoi deformatsii plastiny, zaschemlennoi po krayu”, Vychisl. mekhanika deform. tverdogo tela, 2 (1992), 10–21

[11] M. Dauge, I. Gruias, “Edge layers in thin elastic plates”, Comp. Meth. Appl. Mech. Enginnering, 157 (1998), 335–347 | DOI | MR | Zbl

[12] S. A. Nazarov, “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestnik LGU. Seriya 1. Vyp. 2, 1982, no. 7, 65–68 | Zbl

[13] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, 2, Akademie-Verlag, Berlin, 1991 | MR

[14] S. A. Nazarov, “Sobstvennye kolebaniya uprugoi polupolosy pri razlichnom raspolozhenii uchastkov fiksatsii ee kraev”, Akusticheskii zhurnal, 69:4 (2023), 338–409

[15] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl

[16] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc., 97:3 (2008), 718–752 | DOI | MR | Zbl

[17] S. A. Nazarov, “Porogovye rezonansy i virtualnye urovni v spektre tsilindricheskikh i periodicheskikh volnovodov”, Izvestiya RAN. Seriya matem., 84:6 (2020), 73–130 | DOI | MR | Zbl

[18] V. Z. Parton, P. I. Perlin, Metody matematicheskoi teorii uprugosti, Nauka, M., 1981 | MR

[19] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980

[20] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292

[21] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR

[22] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[23] S. A. Nazarov, “Uprugie volny, zakhvachennye odnorodnym anizotropnym polutsilindrom”, Matem. sbornik, 204:11 (2013), 99–130 | DOI | MR | Zbl

[24] S. A. Nazarov, “Diskretnyi spektr kolenchatykh kvantovykh i uprugikh volnovodov”, Zhurnal vychisl. matem. i matem. fiz., 56:5 (2016), 879–895 | DOI | Zbl

[25] I. V. Kamotskii, S. A. Nazarov, “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Problemy matem. analiza, 19, Nauchn. kniga, Novosibirsk, 1999, 105–148

[26] R. Leis, Initial boundary value problems of mathematical physics, B.G. Teubner, Stuttgart, 1986 | MR

[27] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1961 | MR

[28] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resomamnces for waveguide junctions”, J. Math. Anal. and Appl., 449:1 (2017), 907–925 | DOI | MR | Zbl

[29] F. L. Bakharev, S. A. Nazarov, “Kriterii nalichiya i otsutstviya ogranichennykh reshenii na poroge nepreryvnogo spektra v ob'edinenii kvantovykh volnovodov”, Algebra i analiz, 32:6 (2020), 1–23

[30] S. A. Nazarov, “Sokhranenie porogovykh rezonansov i ottseplenie sobstvennykh chisel ot poroga nepreryvnogo spektra kvantovogo volnovoda”, Matem. sbornik, 212:7 (2021), 84–121 | DOI | MR | Zbl

[31] S. A. Nazarov, “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funkts. analiz i ego prilozh., 46:3 (2013), 37–53 | DOI

[32] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | Zbl

[33] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967, 310 pp.

[34] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[35] S. A. Nazarov, “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | Zbl

[36] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[37] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika (nerelyativiskaya teoriya), Nauka, M., 1974 | MR

[38] L. Friedlander, M. Solomyak, “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Phys., 15:2 (2008), 238–242 | DOI | MR | Zbl

[39] L. Friedlander, M. Solomyak, “On the spectrum of the Dirichlet Laplacian in a narrow strip”, Israel J. Math., 170 (2009), 337–354 | DOI | MR | Zbl

[40] D. Borisov, P. Freitas, “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains”, Ann. Inst. Henri Poincaré. Anal. Non Linèaire, 26:2 (2009), 547–560 | DOI | MR | Zbl

[41] D. Borisov, P. Freitas, “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in $\mathbb R ^d$”, J. Funct. Anal., 258:3 (2010), 893–912 | DOI | MR | Zbl

[42] S. A. Nazarov, “Okolovershinnaya lokalizatsiya sobstvennykh funktsii zadachi Dirikhle v tonkikh mnogogrannikakh”, Sibirsk. matem. zhurnal, 54:3 (2013), 655–672 | MR | Zbl

[43] S. A. Nazarov, E. Perez, J. Taskinen, “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains”, Transactions of the American Mathematical Society, 368:7 (2016), 4787–4829 | DOI | MR | Zbl

[44] B. A. Shoikhet, “Ob asimptoticheski tochnykh uravneniyakh tonkikh plit slozhnoi struktury”, Prikladnaya matematika i mekhanika, 37:5 (1973), 913–924

[45] P. G. Ciarlet, Mathematical elasticity, v. II, Studies in Mathematics and its Applications, 27, Theory of plates, Amsterdam, 1997 | MR | Zbl

[46] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005 | MR

[47] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980

[48] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986