@article{ZNSL_2023_521_a9,
author = {S. A. Nazarov},
title = {Distribution of natural oscillations models in a plate imbedded into absolutely rigid half-space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {154--199},
year = {2023},
volume = {521},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a9/}
}
S. A. Nazarov. Distribution of natural oscillations models in a plate imbedded into absolutely rigid half-space. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 154-199. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a9/
[1] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988
[2] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[3] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[4] V. A. Kondratev, O. A. Oleinik, “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, Uspekhi matem. nauk, 43:5 (1988), 55–98 | MR
[5] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[6] S. A. Nazarov, “Dvumernye asimptoticheskie modeli tonkikh tsilindricheskikh uprugikh prokladok”, Differentsialnye uravneniya, 58:12 (2022), 1666–1682 | Zbl
[7] G. R. Kirchhoff, “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe”, J. Reine Angew. Math., 40 (1850), 51–88 | MR
[8] G. R. Kirchhoff, “Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes”, J. Reine Angew. Math., 56 (1859), 285–313 | MR
[9] I. S. Zorin, S. A. Nazarov, “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikladnaya matem. i mekhanika, 53:4 (1989), 642–650 | MR | Zbl
[10] I. S. Zorin, S. A. Nazarov, “Dvuchlennaya asimptotika resheniya zadachi o prodolnoi deformatsii plastiny, zaschemlennoi po krayu”, Vychisl. mekhanika deform. tverdogo tela, 2 (1992), 10–21
[11] M. Dauge, I. Gruias, “Edge layers in thin elastic plates”, Comp. Meth. Appl. Mech. Enginnering, 157 (1998), 335–347 | DOI | MR | Zbl
[12] S. A. Nazarov, “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vestnik LGU. Seriya 1. Vyp. 2, 1982, no. 7, 65–68 | Zbl
[13] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, 2, Akademie-Verlag, Berlin, 1991 | MR
[14] S. A. Nazarov, “Sobstvennye kolebaniya uprugoi polupolosy pri razlichnom raspolozhenii uchastkov fiksatsii ee kraev”, Akusticheskii zhurnal, 69:4 (2023), 338–409
[15] S. Molchanov, B. Vainberg, “Scattering solutions in networks of thin fibers: small diameter asymptotics”, Comm. Math. Phys., 273:2 (2007), 533–559 | DOI | MR | Zbl
[16] D. Grieser, “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc., 97:3 (2008), 718–752 | DOI | MR | Zbl
[17] S. A. Nazarov, “Porogovye rezonansy i virtualnye urovni v spektre tsilindricheskikh i periodicheskikh volnovodov”, Izvestiya RAN. Seriya matem., 84:6 (2020), 73–130 | DOI | MR | Zbl
[18] V. Z. Parton, P. I. Perlin, Metody matematicheskoi teorii uprugosti, Nauka, M., 1981 | MR
[19] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980
[20] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292
[21] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR
[22] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[23] S. A. Nazarov, “Uprugie volny, zakhvachennye odnorodnym anizotropnym polutsilindrom”, Matem. sbornik, 204:11 (2013), 99–130 | DOI | MR | Zbl
[24] S. A. Nazarov, “Diskretnyi spektr kolenchatykh kvantovykh i uprugikh volnovodov”, Zhurnal vychisl. matem. i matem. fiz., 56:5 (2016), 879–895 | DOI | Zbl
[25] I. V. Kamotskii, S. A. Nazarov, “O sobstvennykh funktsiyakh, lokalizovannykh okolo kromki tonkoi oblasti”, Problemy matem. analiza, 19, Nauchn. kniga, Novosibirsk, 1999, 105–148
[26] R. Leis, Initial boundary value problems of mathematical physics, B.G. Teubner, Stuttgart, 1986 | MR
[27] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1961 | MR
[28] K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resomamnces for waveguide junctions”, J. Math. Anal. and Appl., 449:1 (2017), 907–925 | DOI | MR | Zbl
[29] F. L. Bakharev, S. A. Nazarov, “Kriterii nalichiya i otsutstviya ogranichennykh reshenii na poroge nepreryvnogo spektra v ob'edinenii kvantovykh volnovodov”, Algebra i analiz, 32:6 (2020), 1–23
[30] S. A. Nazarov, “Sokhranenie porogovykh rezonansov i ottseplenie sobstvennykh chisel ot poroga nepreryvnogo spektra kvantovogo volnovoda”, Matem. sbornik, 212:7 (2021), 84–121 | DOI | MR | Zbl
[31] S. A. Nazarov, “Prinuditelnaya ustoichivost prostogo sobstvennogo chisla na nepreryvnom spektre volnovoda”, Funkts. analiz i ego prilozh., 46:3 (2013), 37–53 | DOI
[32] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | Zbl
[33] M. D. Van Daik, Metody vozmuschenii v mekhanike zhidkostei, Mir, M., 1967, 310 pp.
[34] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR
[35] S. A. Nazarov, “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | Zbl
[36] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[37] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika (nerelyativiskaya teoriya), Nauka, M., 1974 | MR
[38] L. Friedlander, M. Solomyak, “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Phys., 15:2 (2008), 238–242 | DOI | MR | Zbl
[39] L. Friedlander, M. Solomyak, “On the spectrum of the Dirichlet Laplacian in a narrow strip”, Israel J. Math., 170 (2009), 337–354 | DOI | MR | Zbl
[40] D. Borisov, P. Freitas, “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains”, Ann. Inst. Henri Poincaré. Anal. Non Linèaire, 26:2 (2009), 547–560 | DOI | MR | Zbl
[41] D. Borisov, P. Freitas, “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in $\mathbb R ^d$”, J. Funct. Anal., 258:3 (2010), 893–912 | DOI | MR | Zbl
[42] S. A. Nazarov, “Okolovershinnaya lokalizatsiya sobstvennykh funktsii zadachi Dirikhle v tonkikh mnogogrannikakh”, Sibirsk. matem. zhurnal, 54:3 (2013), 655–672 | MR | Zbl
[43] S. A. Nazarov, E. Perez, J. Taskinen, “Localization effect for Dirichlet eigenfunctions in thin non-smooth domains”, Transactions of the American Mathematical Society, 368:7 (2016), 4787–4829 | DOI | MR | Zbl
[44] B. A. Shoikhet, “Ob asimptoticheski tochnykh uravneniyakh tonkikh plit slozhnoi struktury”, Prikladnaya matematika i mekhanika, 37:5 (1973), 913–924
[45] P. G. Ciarlet, Mathematical elasticity, v. II, Studies in Mathematics and its Applications, 27, Theory of plates, Amsterdam, 1997 | MR | Zbl
[46] G. Panasenko, Multi-scale modelling for structures and composites, Springer, Dordrecht, 2005 | MR
[47] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980
[48] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986