Dynamic inverse problem for complex Jacobi matrices
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 136-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the dynamic inverse problem for a dynamical system with discrete time associated with a semi-infinite complex Jacobi matrix. We propose two approaches of recovering coefficients from dynamic response operator and provide a characterization of dynamic inverse data.
@article{ZNSL_2023_521_a8,
     author = {A. S. Mikhailov and V. S. Mikhailov},
     title = {Dynamic inverse problem for complex {Jacobi} matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--153},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a8/}
}
TY  - JOUR
AU  - A. S. Mikhailov
AU  - V. S. Mikhailov
TI  - Dynamic inverse problem for complex Jacobi matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 136
EP  - 153
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a8/
LA  - ru
ID  - ZNSL_2023_521_a8
ER  - 
%0 Journal Article
%A A. S. Mikhailov
%A V. S. Mikhailov
%T Dynamic inverse problem for complex Jacobi matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 136-153
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a8/
%G ru
%F ZNSL_2023_521_a8
A. S. Mikhailov; V. S. Mikhailov. Dynamic inverse problem for complex Jacobi matrices. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 136-153. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a8/

[1] S. A. Avdonin, M. I. Belishev, “Boundary control and the dynamic inverse problem for a nonseladjoint Sturm-Louivllle operator”, Control and Cybernetics, 25:3 (1996), 429–440 | MR | Zbl

[2] S. A. Avdonin, V. S. Mikhaylov, “The boundary control approach to inverse spectral theory”, Inverse Problems, 26:4 (2010), 045009, 19 pp. | DOI | MR | Zbl

[3] F. V. Atkinson, Discrete and continuous boundary problems, Acad. Press, 1964 | MR | Zbl

[4] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23 (2007), R1 | DOI | MR | Zbl

[5] M. I. Belishev, T. Sh. Khabibullin, “Characterization of data in dynamical inverse problem for the 1d wave equation with matrix potential”, Zap. nauchnyu seminyu POMI, 493, 2020, 48–72 | MR

[6] M. I. Belishev, V. S. Mikhailov, “Unified approach to classical equations of inverse problem theory”, J. Inverse and Ill-Posed Problems, 20:4 (2012), 461–488 | DOI | MR | Zbl

[7] G. Sh. Guseinov, “Determination of an infinite non-self-adjoint Jacobi matrix from its generalized spectral function”, Mat. Zametki, 23:2 (1978), 237–248 | MR | Zbl

[8] A. S. Mikhaylov, V. S. Mikhaylov, “Dynamical inverse problem for the discrete Schrödinger operator”, Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016), 842–854 | DOI

[9] A. S. Mikhaylov, V. S. Mikhaylov, “Dynamic inverse problem for Jacobi matrices”, Inverse Problems and Imaging, 13:3 (2019), 431–447 | DOI | MR | Zbl

[10] A. S. Mikhaylov, V. S. Mikhaylov, “Inverse problem for dynamical system associated with Jacobi matrices and classical moment problems”, J. Math. Analys. Appl., 487:1 (2020), 12397 | DOI | MR