@article{ZNSL_2023_521_a7,
author = {M. A. Lyalinov},
title = {Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin el{\cyrf}stic membranes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--135},
year = {2023},
volume = {521},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a7/}
}
TY - JOUR AU - M. A. Lyalinov TI - Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elфstic membranes JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 123 EP - 135 VL - 521 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a7/ LA - ru ID - ZNSL_2023_521_a7 ER -
%0 Journal Article %A M. A. Lyalinov %T Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elфstic membranes %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 123-135 %V 521 %U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a7/ %G ru %F ZNSL_2023_521_a7
M. A. Lyalinov. Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elфstic membranes. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 123-135. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a7/
[1] M. A. Lyalinov, “Localized waves propagating along an angular junction of two thin semi-infinite elastic membranes terminating an acoustic medium”, Russian J. Mathem. Physics, 30:3 (2023), 345–359 | DOI | MR | Zbl
[2] V. D. Lukyanov, G. L. Nikitin, “O rezonansnom rasseyanii normalnykh voln membranoi v akusticheskom volnovode”, Akusticheskii zhurnal, 42:5 (1996), 653–660
[3] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[4] M. A. Lyalinov, “Functional difference equations and eigenfunctions of a Schrödinger operator with $\delta^\prime-$interaction on a circular conical surface”, Proc. Royal Soc. A, 476 (2020), 20200179 | DOI | MR | Zbl
[5] M. A. Lyalinov, “Eigenoscillations in an angular domain and spectral properties of functional equations”, Eur. J. Appl. Math., 2021 (electr. version before publ.) | MR
[6] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET, Edison, NJ, 2012
[7] M. Sh. Birman, M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert spaces, Holland, Dordrecht, 1987 | MR
[8] I. S. Gradstein, I. M. Ryzhik, Tables of Integrals, Series and Products, 4th ed., Academic Press, Orlando, 1980 | MR