Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elфstic membranes
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 123-135
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we compute the eigenfunctions of the continuous (essential) spectrum in the form of the Sommerfeld integral. The eigenfunctions are localised near the membranes and can be interpreted as incoming and outgoing surface waves.
@article{ZNSL_2023_521_a7,
author = {M. A. Lyalinov},
title = {Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin el{\cyrf}stic membranes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--135},
publisher = {mathdoc},
volume = {521},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a7/}
}
TY - JOUR AU - M. A. Lyalinov TI - Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elфstic membranes JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 123 EP - 135 VL - 521 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a7/ LA - ru ID - ZNSL_2023_521_a7 ER -
%0 Journal Article %A M. A. Lyalinov %T Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elфstic membranes %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 123-135 %V 521 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a7/ %G ru %F ZNSL_2023_521_a7
M. A. Lyalinov. Eigenfunctions of the continuous spectrum in the problem of acoustic oscillations in a wedge-shaped domain bounded by an angular junction of two semi-infinite thin elфstic membranes. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 123-135. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a7/