Diffraction of large-number whispering gallery mode by jump of curvature
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 95-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Diffraction of a high-frequency large-number whispering gallery mode is studied, which runs along the concave part of the boundary to its straightening point, where the curvature of the boundary suffers a jump. The “ray skeleton” of the wavefield investigated in detail. Within the framework of the parabolic equation method, asymptotic formulas are constructed for all waves arising in the vicinity of the non-smoothness point of the boundary.
@article{ZNSL_2023_521_a6,
     author = {E. A. Zlobina},
     title = {Diffraction of large-number whispering gallery mode by jump of curvature},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--122},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a6/}
}
TY  - JOUR
AU  - E. A. Zlobina
TI  - Diffraction of large-number whispering gallery mode by jump of curvature
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 95
EP  - 122
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a6/
LA  - ru
ID  - ZNSL_2023_521_a6
ER  - 
%0 Journal Article
%A E. A. Zlobina
%T Diffraction of large-number whispering gallery mode by jump of curvature
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 95-122
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a6/
%G ru
%F ZNSL_2023_521_a6
E. A. Zlobina. Diffraction of large-number whispering gallery mode by jump of curvature. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 95-122. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a6/

[1] A. V. Popov, “Obratnoe rasseyanie ot linii razryva krivizny”, Tr. V Vses. simpoz. po difr. i raspr. voln, Nauka, L., 1971, 171–175

[2] L. Kaminetzky, J. B. Keller, “Diffraction coefficients for higher order edges and vertices”, SIAM J. Appl. Math., 22:1 (1972), 109–134 | DOI | MR | Zbl

[3] Z. M. Rogoff, A. P. Kiselev, “Diffraction at jump of curvature on an impedance boundary”, Wave Motion, 33:2 (2001), 183–208 | DOI | Zbl

[4] N. Ya. Kirpichnikova, V. B. Filippov, “Povedenie poverkhnostnykh voln pri perekhode cherez liniyu sopryazheniya na granitse uprugogo odnorodnogo izotropnogo tela”, Zap. nauchn. semin. POMI, 230 (1995), 86–102

[5] N. Ya. Kirpichnikova, V. B. Filippov, “Difraktsiya volny shepchuschei galerei vblizi linii razryva krivizny”, Zap. nauchn. semin. POMI, 239 (1997), 95–109 | Zbl

[6] N. Ya. Kirpichnikova, V. B. Filippov, “Kraevaya volna v zadache difraktsii na granitse s razryvom krivizny”, Zap. nauchn. semin. POMI, 250 (1998), 274–287 | Zbl

[7] E. A Zlobina, A. P. Kiselev, “Boundary-layer approach to high-frequency diffraction by a jump of curvature”, Wave Motion, 96 (2020), 102571 | DOI | MR

[8] E. A. Zlobina, “Korotkovolnovaya difraktsiya na konture s negladkoi kriviznoi. Pogransloinyi podkhod”, Zap. nauchn. semin. POMI, 493 (2020), 169–185 | MR

[9] E. A. Zlobina, A. P. Kiselev, “Perekhodnaya zona v vysokochastotnoi zadache difraktsii na impedansnoi granitse so skachkom krivizny. Metod Kirkhgofa i metod pogranichnogo sloya”, Radiotekhnika i elektronika, 67 (2022), 130–139 | DOI

[10] E. A. Zlobina, A. P. Kiselev, “The Malyuzhinets–Popov diffraction problem revisited”, Wave Motion, 121 (2023), 103172 | DOI | MR

[11] E. A. Zlobina, A. P. Kiselev, “Difraktsiya volny shepchuschei galerei pri skachkoobraznom raspryamlenii granitsy”, Akusticheskii zhurnal, 69:2 (2023), 119–128

[12] V. A. Borovikov, B. E. Kinber, Geometricheskaya teoriya difraktsii, Svyaz, M., 1978

[13] V. A. Fok, Problemy difraktsii i rasprostraneniya voln, Nauka, M., 1975

[14] V. M. Babich, N. Ya. Kirpichnikova, Metod pogranichnogo sloya v zadachakh difraktsii, Izd. LGU, L., 1974 | MR

[15] A. I. Lanin, M. M. Popov, “Dinamika luchei v okrestnosti tochek raspryamleniya granitsy”, Zap. nauchn. semin. LOMI, 104 (1981), 146–155 | MR | Zbl

[16] M. V. Berry, “Inflection reflection: images in mirrors whose curvature changes sign”, Eur. J. Phys., 42 (2021), 065301 | DOI | Zbl

[17] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972 | MR

[18] M. V. Fedoryuk, Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR

[19] A. S. Kryukovskii, Ravnomernaya asimptoticheskaya teoriya kraevykh i uglovykh katastrof, RosNOU, M., 2013

[20] A. S. Kryukovskii, D. S. Lukin, “Kraevye katastrofy v zadachakh difraktsii”, Radiotekhnika i elektronika, 64:11 (2019), 1116–1121 | DOI

[21] L. Levey, L. B. Felsen, “On incomplete Airy functions and their application to diffraction problems”, Radio Sci., 4:10 (1969), 959–969 | DOI | MR

[22] N. Bleistein, “Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities”, J. Math. Mech., 17:6 (1967), 533–559 | MR | Zbl

[23] Yu. I. Orlov, “Difraktsiya voln na tele s krivolineinym rebrom v okrestnosti polutenevykh osobykh kaustik”, Radiotekhnika i elektronika, 21:4 (1976), 730–738