Existence of a solution to the scattering problem for the ultrahyperbolic equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 79-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the ultrahyperbolic equation in the Euclidean space. The behavior at the infinity of a certain class of solutions is studied. We examine the issue of existence of solutions to the scattering problem: for a given asymptotics at the infinity the corresponding solution to the equation is constructed.
@article{ZNSL_2023_521_a5,
     author = {M. N. Demchenko},
     title = {Existence of a solution to the scattering problem for the ultrahyperbolic equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {79--94},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a5/}
}
TY  - JOUR
AU  - M. N. Demchenko
TI  - Existence of a solution to the scattering problem for the ultrahyperbolic equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 79
EP  - 94
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a5/
LA  - ru
ID  - ZNSL_2023_521_a5
ER  - 
%0 Journal Article
%A M. N. Demchenko
%T Existence of a solution to the scattering problem for the ultrahyperbolic equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 79-94
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a5/
%G ru
%F ZNSL_2023_521_a5
M. N. Demchenko. Existence of a solution to the scattering problem for the ultrahyperbolic equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 79-94. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a5/

[1] A. S. Blagoveschenskii, “O nekotorykh novykh korrektnykh zadachakh dlya volnovogo uravneniya”, Trudy V Vsesoyuznogo simpoziuma po difraktsii i rasprostraneniyu voln (1970), Nauka, L., 1971, 29–35

[2] P. Laks, R. Fillips, Teoriya rasseyaniya, Mir, M., 1971

[3] H. E. Moses, R. T. Prosser, “Acoustic and Electromagnetic Bullets: Derivation of New Exact Solutions of the Acoustic and Maxwell's Equations”, SIAM J. Appl. Math., 50:5 (1990), 1325–1340 | DOI | MR | Zbl

[4] A. P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661–681

[5] A. B. Plachenov, “Vyrazhenie energii akusticheskogo, elektromagnitnogo i uprugogo volnovogo polya cherez ego asimptotiku na bolshikh vremenakh i rasstoyaniyakh”, Zap. nauchn. semin. POMI, 493, 2020, 269–287 | MR

[6] M. I. Belishev, A. F. Vakulenko, “Ob odnoi zadache upravleniya dlya volnovogo uravneniya v $\mathbb R ^3$”, Zap. nauchn. semin. POMI, 332, 2006, 19–37 | Zbl

[7] A. S. Blagoveschenskii, “O kharakteristicheskoi zadache dlya ultragiperbolicheskogo uravneniya”, Matem. sb., 63(105):1 (1964), 137–168

[8] M. N. Demchenko, “Asimptoticheskie svoistva reshenii odnogo ultragiperbolicheskogo uravneniya”, Zap. nauchn. semin. POMI, 516, 2022, 40–64

[9] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986