On the main term of the asymptotics of the problem of few charged particles in the presence of bound states
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 59-78

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we obtained the results that generalize the BBK-approximation, well known in the physical literature, in a situation where particles in subsystems can approach each other. The results obtained allow one to describe the asymptotics of a few-body Coulomb system ($N=3.4$) in the case when the subsystem is in a state of continuous spectrum, as well as in the case when the subsystem (two or three particles) is in a bound state.
@article{ZNSL_2023_521_a4,
     author = {A. M. Budylin and S. B. Levin},
     title = {On the main term of the asymptotics of the problem of few charged particles in the presence of bound states},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {59--78},
     publisher = {mathdoc},
     volume = {521},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a4/}
}
TY  - JOUR
AU  - A. M. Budylin
AU  - S. B. Levin
TI  - On the main term of the asymptotics of the problem of few charged particles in the presence of bound states
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 59
EP  - 78
VL  - 521
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a4/
LA  - ru
ID  - ZNSL_2023_521_a4
ER  - 
%0 Journal Article
%A A. M. Budylin
%A S. B. Levin
%T On the main term of the asymptotics of the problem of few charged particles in the presence of bound states
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 59-78
%V 521
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a4/
%G ru
%F ZNSL_2023_521_a4
A. M. Budylin; S. B. Levin. On the main term of the asymptotics of the problem of few charged particles in the presence of bound states. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 59-78. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a4/