Singular astigmatic splash pulse is a solution of the homogeneous wave equation
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 54-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that a certain simple Bateman-type function having a running singularity, satisfies the homogeneous wave equation on the entire space-time.
@article{ZNSL_2023_521_a3,
     author = {I. A. Blagoveshchenskii and A. P. Kiselev},
     title = {Singular astigmatic splash pulse is a solution of the homogeneous wave equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--58},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a3/}
}
TY  - JOUR
AU  - I. A. Blagoveshchenskii
AU  - A. P. Kiselev
TI  - Singular astigmatic splash pulse is a solution of the homogeneous wave equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 54
EP  - 58
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a3/
LA  - ru
ID  - ZNSL_2023_521_a3
ER  - 
%0 Journal Article
%A I. A. Blagoveshchenskii
%A A. P. Kiselev
%T Singular astigmatic splash pulse is a solution of the homogeneous wave equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 54-58
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a3/
%G ru
%F ZNSL_2023_521_a3
I. A. Blagoveshchenskii; A. P. Kiselev. Singular astigmatic splash pulse is a solution of the homogeneous wave equation. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 54-58. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a3/

[1] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Mir, M., 1986

[2] A. S. Blagoveshchensky, A. M. Tagirdzhanov, A. P. Kiselev, “On the Bateman-Hörmander solution of the wave equation, having a singularity at a running point”, Zap. nauchn. semin. POMI, 471, 2018, 76–85 | MR

[3] H. Bateman, “The conformal transformations of space of four dimensions and their applications to geometrical optics”, Proc. London Math. Soc., 7 (1909), 70–89 | DOI | MR

[4] G. Beitmen, Matematicheskaya teoriya rasprostraneniya elekiromagnitnykh voln, Nauka, M., 1958

[5] A. S. Blagoveschenskii, A. P. Kiselev, A. M. Tagirdzhanov, “Prostye resheniya volnovogo uravneniya s singulyarnostyu v beguschei tochke, osnovannye na kompleksifitsirovannom reshenii Beitmena”, Zap. nauchn. semin. POMI, 438, 2015, 73–82

[6] E. A. Zlobina, A. P. Kiselev, “Dvumernye singulyarnye splesh mody”, Zap. nauchn. semin. POMI, 483, 2019, 79–84

[7] A. S. Blagoveschenskii, A. P. Kiselev, “Dvumernye volny Beitmena–Khermandera s singulyarnostyu v beguschei tochke”, Matem. zametki, 106:5 (2019), 793–796 | DOI | MR

[8] A. S. Blagoveschenskii, E. A. Zlobina, A. P. Kiselev, “Dvumernye analogi klassicheskoi volny Beitmena – resheniya zadach s dvizhuschimisya istochnikami”, Differents. uravneniya, 58:2 (2022), 270–274

[9] A. P. Kiselev, A. B. Plachenov, P. Chamorro-Posada, “Nonparaxial wave beams and packets with general astigmatism”, Phys. Rev. A, 85:4 (2012), 043835 | DOI

[10] A. S. Blagoveschenskii, “Ploskie volny, resheniya Beitmena i istochniki na beskonechnosti”, Zap. nauchn. semin. POMI, 426, 2014, 23–33

[11] S. Feng, H. G. Winful, R. W. Hellwarth, “Spatiotemporal evolution of focused single-cycle electromagnetic pulses”, Phys. Rev. E, 59 (1999), 4630–4649 | DOI | MR

[12] A. S. Blagoveschenskii, A. P. Kiselev, “O svyazi mezhdu dvumya prostymi lokalizovannymi resheniyami volnovogo uravneniya”, ZhVMMF, 57:6 (2017), 958–960