The Riemann–Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 240-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the study of the Riemann–Hilbert problem for the Schrodinger operator $L=-\frac{d^2}{dx^2}-\frac{x^2}{4}+q(x)$ with a potential as the sum of a parabola (with branches down) and a smooth finite potential $q(x)$. The constructed Riemann–Hilbert problem can be considered as a construction of a direct scattering problem for a given operator.
@article{ZNSL_2023_521_a12,
     author = {V. V. Sukhanov},
     title = {The {Riemann{\textendash}Hilbert} problem for a one-dimensional {Schrodinger} operator with a potential in the form of a sum of a parabola and a finite potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {240--258},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/}
}
TY  - JOUR
AU  - V. V. Sukhanov
TI  - The Riemann–Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 240
EP  - 258
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/
LA  - ru
ID  - ZNSL_2023_521_a12
ER  - 
%0 Journal Article
%A V. V. Sukhanov
%T The Riemann–Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 240-258
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/
%G ru
%F ZNSL_2023_521_a12
V. V. Sukhanov. The Riemann–Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 240-258. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/

[1] D. Chelkak, P. Kargaev, E. Korotyaev, “Inverse problem for harmonic oscillator perturbed by potential, characterization”, Comm. Math. Phys., 249:1 (2004), 133–196 | DOI | MR | Zbl

[2] A. Its, V. Sukhanov, “A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line”, Inverse Problems, 32:5 | DOI | MR

[3] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972 | MR

[4] R. Beals, P. Deift, C. Tomei, Direct and inverse scattering on the line, Mathematical surveys and monographs (AMS), 28, 1988, 209 pp. | DOI | MR | Zbl

[5] V. V. Sukhanov, “An inverse problem for a selfadjoint differential operator on the line”, Mat. sbornik, 137:2 (1988), 242–259 | MR | Zbl

[6] R. Shterenberg, V. Sukhanov, “Riemann–Hilbert approach to the inverse problem for the Schrodinger operator on the half-line”, Algebra Analiz, 26:6 (2014), 198–215 | MR

[7] H. Bateman, A. Erdeyi, Higher Transcendental Functions, v. II, Mc Grow-Hill Book Company, New York, 1953 | MR

[8] Gordon and Breach Science Pub. | MR | Zbl

[9] P. Deift, X. Zhou, “Direct and inverse scattering on the line with arbitrary singularities”, Comm. Pure Appl. Math., 44:5 (1991), 485–533 | DOI | MR | Zbl

[10] P. Deift, X. Zhou, “A priori $L^p $ estimates for solutions of Riemann-Hilbert problems”, Int. Math. Res. Noties, 40 (2002), 2121–2154 | DOI | MR | Zbl

[11] N. Schwid, “The asymptotic forms of the Hermite and Weber functions”, Trans. Amer. Math. Soc., 37 (1935), 339–362 | DOI | MR | Zbl