The Riemann--Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 240-258

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the Riemann–Hilbert problem for the Schrodinger operator $L=-\frac{d^2}{dx^2}-\frac{x^2}{4}+q(x)$ with a potential as the sum of a parabola (with branches down) and a smooth finite potential $q(x)$. The constructed Riemann–Hilbert problem can be considered as a construction of a direct scattering problem for a given operator.
@article{ZNSL_2023_521_a12,
     author = {V. V. Sukhanov},
     title = {The {Riemann--Hilbert} problem for a one-dimensional {Schrodinger} operator with a potential in the form of a sum of a parabola and a finite potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {240--258},
     publisher = {mathdoc},
     volume = {521},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/}
}
TY  - JOUR
AU  - V. V. Sukhanov
TI  - The Riemann--Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 240
EP  - 258
VL  - 521
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/
LA  - ru
ID  - ZNSL_2023_521_a12
ER  - 
%0 Journal Article
%A V. V. Sukhanov
%T The Riemann--Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 240-258
%V 521
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/
%G ru
%F ZNSL_2023_521_a12
V. V. Sukhanov. The Riemann--Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 240-258. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/