The Riemann--Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 240-258
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to the study of the Riemann–Hilbert problem for the Schrodinger operator $L=-\frac{d^2}{dx^2}-\frac{x^2}{4}+q(x)$ with a potential as the sum of a parabola (with branches down) and a smooth finite potential $q(x)$. The constructed Riemann–Hilbert problem can be considered as a construction of a direct scattering problem for a given operator.
@article{ZNSL_2023_521_a12,
author = {V. V. Sukhanov},
title = {The {Riemann--Hilbert} problem for a one-dimensional {Schrodinger} operator with a potential in the form of a sum of a parabola and a finite potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {240--258},
publisher = {mathdoc},
volume = {521},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/}
}
TY - JOUR AU - V. V. Sukhanov TI - The Riemann--Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 240 EP - 258 VL - 521 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/ LA - ru ID - ZNSL_2023_521_a12 ER -
%0 Journal Article %A V. V. Sukhanov %T The Riemann--Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 240-258 %V 521 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/ %G ru %F ZNSL_2023_521_a12
V. V. Sukhanov. The Riemann--Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 240-258. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/