@article{ZNSL_2023_521_a12,
author = {V. V. Sukhanov},
title = {The {Riemann{\textendash}Hilbert} problem for a one-dimensional {Schrodinger} operator with a potential in the form of a sum of a parabola and a finite potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {240--258},
year = {2023},
volume = {521},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/}
}
TY - JOUR AU - V. V. Sukhanov TI - The Riemann–Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 240 EP - 258 VL - 521 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/ LA - ru ID - ZNSL_2023_521_a12 ER -
%0 Journal Article %A V. V. Sukhanov %T The Riemann–Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 240-258 %V 521 %U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/ %G ru %F ZNSL_2023_521_a12
V. V. Sukhanov. The Riemann–Hilbert problem for a one-dimensional Schrodinger operator with a potential in the form of a sum of a parabola and a finite potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 240-258. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a12/
[1] D. Chelkak, P. Kargaev, E. Korotyaev, “Inverse problem for harmonic oscillator perturbed by potential, characterization”, Comm. Math. Phys., 249:1 (2004), 133–196 | DOI | MR | Zbl
[2] A. Its, V. Sukhanov, “A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line”, Inverse Problems, 32:5 | DOI | MR
[3] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Publications, 1972 | MR
[4] R. Beals, P. Deift, C. Tomei, Direct and inverse scattering on the line, Mathematical surveys and monographs (AMS), 28, 1988, 209 pp. | DOI | MR | Zbl
[5] V. V. Sukhanov, “An inverse problem for a selfadjoint differential operator on the line”, Mat. sbornik, 137:2 (1988), 242–259 | MR | Zbl
[6] R. Shterenberg, V. Sukhanov, “Riemann–Hilbert approach to the inverse problem for the Schrodinger operator on the half-line”, Algebra Analiz, 26:6 (2014), 198–215 | MR
[7] H. Bateman, A. Erdeyi, Higher Transcendental Functions, v. II, Mc Grow-Hill Book Company, New York, 1953 | MR
[8] Gordon and Breach Science Pub. | MR | Zbl
[9] P. Deift, X. Zhou, “Direct and inverse scattering on the line with arbitrary singularities”, Comm. Pure Appl. Math., 44:5 (1991), 485–533 | DOI | MR | Zbl
[10] P. Deift, X. Zhou, “A priori $L^p $ estimates for solutions of Riemann-Hilbert problems”, Int. Math. Res. Noties, 40 (2002), 2121–2154 | DOI | MR | Zbl
[11] N. Schwid, “The asymptotic forms of the Hermite and Weber functions”, Trans. Amer. Math. Soc., 37 (1935), 339–362 | DOI | MR | Zbl