Homogenization of a one-dimensional fourth-order periodic operator with a singular potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 212-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In $L_2(\mathbb{R})$, we consider a fourth-order differential operator $B_{\varepsilon}$ of the form $B_{\varepsilon} = \frac{d^4}{dx^4} + \varepsilon^{-4} V({x}/\varepsilon)$, where $V(x)$ is a real-valued $1$-periodic function belonging to $L_{2, \operatorname{loc}}(\mathbb{R})$, and $\varepsilon >0$ is a small parameter. It is assumed that the point $\lambda_0 =0$ is the lower edge of the spectrum of the operator $B = \frac{d^4}{dx^4} + V({x})$ and the first band function $E_1(k)$ of the operator $B$ on the period $k \in [-\pi, \pi)$ reaches a minimum at exactly two points $\pm k_0$, $0< k_0 <\pi$, and behaves like $g^{(1)}(k \mp k_0)^2$, $g^{(1)} >0$, near these points. The behavior of the resolvent $(B_{\varepsilon} + I)^{-1}$ for small $\varepsilon$ is studied. We obtain approximation for this resolvent in the operator norm with an error $O(\varepsilon^2)$. The approximation is described in terms of the spectral characteristics of the operator $B$ at the bottom of the spectrum.
@article{ZNSL_2023_521_a11,
     author = {A. A. Raev and V. A. Sloushch and T. A. Suslina},
     title = {Homogenization of a one-dimensional fourth-order periodic operator with a singular potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {212--239},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a11/}
}
TY  - JOUR
AU  - A. A. Raev
AU  - V. A. Sloushch
AU  - T. A. Suslina
TI  - Homogenization of a one-dimensional fourth-order periodic operator with a singular potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 212
EP  - 239
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a11/
LA  - ru
ID  - ZNSL_2023_521_a11
ER  - 
%0 Journal Article
%A A. A. Raev
%A V. A. Sloushch
%A T. A. Suslina
%T Homogenization of a one-dimensional fourth-order periodic operator with a singular potential
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 212-239
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a11/
%G ru
%F ZNSL_2023_521_a11
A. A. Raev; V. A. Sloushch; T. A. Suslina. Homogenization of a one-dimensional fourth-order periodic operator with a singular potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 212-239. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a11/

[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., 1978 | MR | Zbl

[2] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984

[3] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993

[4] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108

[5] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104

[6] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130

[7] T. A. Suslina, “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. analiz i ego pril., 38:4 (2004), 86–90 | DOI | MR | Zbl

[8] T. A. Suslina, “Homogenization of a periodic parabolic Cauchy problem”, Amer. Math. Soc. Transl. (2), 220 (2007), 201–233 | MR | Zbl

[9] E. S. Vasilevskaya, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130

[10] T. A. Suslina, “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\mathbb{R}^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl

[11] V. V. Zhikov, “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. RAN, 403:3 (2005), 305–308 | MR | Zbl

[12] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[13] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[14] V. V. Zhikov, S. E. Pastukhova, “Ob operatornykh otsenkakh v teorii usredneniya”, Uspekhi matem. nauk, 71:3 (2016), 27–122 | DOI | MR | Zbl

[15] N. A. Veniaminov, “Usrednenie periodicheskikh differentsialnykh operatorov vysokogo poryadka”, Algebra i analiz, 22:5 (2010), 69–103 | MR

[16] A. A. Kukushkin, T. A. Suslina, “Usrednenie ellipticheskikh operatorov vysokogo poryadka s periodicheskimi koeffitsientami”, Algebra i analiz, 28:1 (2016), 89–149

[17] A. A. Miloslova, T. A. Suslina, “Usrednenie parabolicheskikh uravnenii vysokogo poryadka s periodicheskimi koeffitsientami”, Sovrem. mat. Fundam. napravl., 67, no. 1, 2021, 130–191 | MR

[18] V. A. Slousch, T. A. Suslina, “Usrednenie ellipticheskogo operatora chetvertogo poryadka s periodicheskimi koeffitsientami pri uchete korrektorov”, Funkts. analiz i ego pril., 54:3 (2020), 94–99 | DOI | MR | Zbl

[19] V. A. Slousch, T. A. Suslina, “Operatornye otsenki pri usrednenii ellipticheskikh operatorov vysokogo poryadka s periodicheskimi koeffitsientami”, Algebra i analiz, 35:2 (2023), 107–173

[20] S. E. Pastukhova, “Operatornye otsenki usredneniya dlya ellipticheskikh uravnenii chetvertogo poryadka”, Algebra i analiz, 28:2 (2016), 204–226

[21] S. E. Pastukhova, “Estimates in homogenization of higher-order elliptic operators”, App. Anal., 95:7 (2016), 1449–1466 | DOI | MR | Zbl

[22] S. E. Pastukhova, “$L^2$-approksimatsiya rezolventy v usrednenii ellipticheskikh operatorov vysokogo poryadka”, Probl. mat. anal., 107 (2020), 113–132 | Zbl

[23] S. E. Pastukhova, “Uluchshennye $L^2$-approksimatsii rezolventy v usrednenii operatorov chetvertogo poryadka”, Algebra i analiz, 34:4 (2022), 74–106

[24] M. Sh. Birman, “O protsedure usredneniya dlya periodicheskikh operatorov v okrestnosti kraya vnutrennei lakuny”, Algebra i analiz, 15:4 (2003), 61–71

[25] M. Sh. Birman, T. A. Suslina, “Usrednenie mnogomernogo periodicheskogo ellipticheskogo operatora v okrestnosti kraya vnutrennei lakuny”, Zapiski nauchnykh seminarov POMI, 318, 2004, 60–74 | Zbl

[26] T. A. Suslina, A. A. Kharin, “Usrednenie s uchetom korrektora dlya periodicheskogo ellipticheskogo operatora vblizi kraya vnutrennei lakuny”, Problemy matematicheskogo analiza, 41 (2009), 127–141

[27] T. A. Suslina, A. A. Kharin, “Usrednenie s uchetom korrektora dlya mnogomernogo periodicheskogo ellipticheskogo operatora vblizi kraya vnutrennei lakuny”, Problemy matematicheskogo analiza, 59 (2011), 177–193

[28] A. R. Akhmatova, E. S. Aksenova, V. A. Sloushch, T. A. Suslina, “Homogenization of the parabolic equation with periodic coefficients at the edge of a spectral gap”, Complex Variables and Elliptic Equations, 67:3 (2022), 523–555 | DOI | MR | Zbl

[29] A. A. Mishulovich, “Usrednenie mnogomernykh periodicheskikh uravnenii s periodicheskimi koeffitsientami na krayu vnutrennei lakuny”, Zapiski nauchnykh seminarov POMI, 516, 2022, 135–175 | MR

[30] A. A. Mishulovich, V. A. Slousch, T. A. Suslina, “Usrednenie odnomernogo periodicheskogo ellipticheskogo operatora na krayu spektralnoi lakuny: operatornye otsenki v energeticheskoi norme”, Zap. nauchn. semin. POMI, 519, 2022, 114–151 | MR

[31] T. A. Suslina, “Teoretiko-operatornyi podkhod k usredneniyu uravnenii tipa Shredingera s periodicheskimi koeffitsientami”, Uspekhi matem. nauk, 78:6 (2023)

[32] A. Badanin, E. Korotyaev, “Spectral asymptotics for periodic fourth-order operators”, International Mathematics Research Notices, 45 (2005), 2775–2814 | DOI | MR | Zbl

[33] M. M. Skriganov, “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. MIAN SSSR, 171, 1985, 3–122