Homogenization of a one-dimensional fourth-order periodic operator with a singular potential
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 212-239
Voir la notice de l'article provenant de la source Math-Net.Ru
In $L_2(\mathbb{R})$, we consider a fourth-order differential operator $B_{\varepsilon}$ of the form $B_{\varepsilon} = \frac{d^4}{dx^4} + \varepsilon^{-4} V({x}/\varepsilon)$, where $V(x)$ is a real-valued $1$-periodic function belonging to $L_{2, \operatorname{loc}}(\mathbb{R})$, and $\varepsilon >0$ is a small parameter. It is assumed that the point $\lambda_0 =0$ is the lower edge of the spectrum of the operator $B = \frac{d^4}{dx^4} + V({x})$ and the first band function $E_1(k)$ of the operator $B$ on the period $k \in [-\pi, \pi)$ reaches a minimum at exactly two points $\pm k_0$, $0 k_0 \pi$, and behaves like $g^{(1)}(k \mp k_0)^2$, $g^{(1)} >0$, near these points. The behavior of the resolvent $(B_{\varepsilon} + I)^{-1}$ for small $\varepsilon$ is studied. We obtain approximation for this resolvent in the operator norm with an error $O(\varepsilon^2)$. The approximation is described in terms of the spectral characteristics of the operator $B$ at the bottom of the spectrum.
@article{ZNSL_2023_521_a11,
author = {A. A. Raev and V. A. Sloushch and T. A. Suslina},
title = {Homogenization of a one-dimensional fourth-order periodic operator with a singular potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {212--239},
publisher = {mathdoc},
volume = {521},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a11/}
}
TY - JOUR AU - A. A. Raev AU - V. A. Sloushch AU - T. A. Suslina TI - Homogenization of a one-dimensional fourth-order periodic operator with a singular potential JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 212 EP - 239 VL - 521 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a11/ LA - ru ID - ZNSL_2023_521_a11 ER -
%0 Journal Article %A A. A. Raev %A V. A. Sloushch %A T. A. Suslina %T Homogenization of a one-dimensional fourth-order periodic operator with a singular potential %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 212-239 %V 521 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a11/ %G ru %F ZNSL_2023_521_a11
A. A. Raev; V. A. Sloushch; T. A. Suslina. Homogenization of a one-dimensional fourth-order periodic operator with a singular potential. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 212-239. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a11/