Reflected and scattered wave imaging by the Boundary Control Method, numerical experiment
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 200-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article presents the results of a numerical experiment to visualize the propagation of reflected and scattered waves based on the boundary control method.
@article{ZNSL_2023_521_a10,
     author = {{\CYRV}. {\CYRV}. Nosikova and L. N. Pestov and S. N. Sergeev and V. M. Filatova},
     title = {Reflected and scattered wave imaging by the {Boundary} {Control} {Method,} numerical experiment},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--211},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a10/}
}
TY  - JOUR
AU  - В. В. Nosikova
AU  - L. N. Pestov
AU  - S. N. Sergeev
AU  - V. M. Filatova
TI  - Reflected and scattered wave imaging by the Boundary Control Method, numerical experiment
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 200
EP  - 211
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a10/
LA  - ru
ID  - ZNSL_2023_521_a10
ER  - 
%0 Journal Article
%A В. В. Nosikova
%A L. N. Pestov
%A S. N. Sergeev
%A V. M. Filatova
%T Reflected and scattered wave imaging by the Boundary Control Method, numerical experiment
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 200-211
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a10/
%G ru
%F ZNSL_2023_521_a10
В. В. Nosikova; L. N. Pestov; S. N. Sergeev; V. M. Filatova. Reflected and scattered wave imaging by the Boundary Control Method, numerical experiment. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 200-211. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a10/

[1] M. I. Belishev, “How to see waves under the Earth surface (the BC-method for geophysicists)”, Ill-Posed and Inverse Problems, eds. S. I. Kabanikhin, V. G. Romanov, VSP, 2002, 55–72 | MR

[2] M. I. Belishev, A. B. Pushnitskii, “K treugolnoi faktorizatsii polozhitelnykh operatorov”, Matematicheskie voprosy teorii rasprostraneniya voln. 26, Zap. nauchn. sem. POMI, 239, POMI, SPb., 1997 ; J. Math. Sci. (New York), 96:4 (1999), 3312–3320 | Zbl | DOI | MR

[3] L. Pestov, G. Uhlmann, H. Zhou, “An inverse kinematic problem with internal sources”, Inverse Problems, 31:5 (2015) | DOI | MR | Zbl

[4] M. I. Belishev, “An approach to multidimensional inverse problems for the wave equation”, Sov. Math. Dokl., 36 (1988), 481–484 | MR | Zbl

[5] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23 (2007), R1–R67 | DOI | MR | Zbl

[6] M. I. Belishev, V. Y. Gotlib, “Dynamical variant of the BC-method: theory and numerical testing”, J. Inverse Ill-Posed Probl., 7 (1999), 221–240 | DOI | MR | Zbl

[7] M. I. Belishev, I. B. Ivanov, I. V. Kubyshkin, V. S. Semenov, “Numerical testing in determination of sound speed from a part of boundary by the BC-method”, J. Inv. Ill-posed Probl., 23:5 (2016) | MR

[8] Boganik G.N., Gurvich I.I., Seismorazvedka, Uchebnik dlya vuzov, Izdatelstvo AIS, Tver, 2006, 500 pp.