@article{ZNSL_2023_521_a1,
author = {M. I. Belishev},
title = {Wave propagation in abstract dynamical system with boundary control},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {8--32},
year = {2023},
volume = {521},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/}
}
M. I. Belishev. Wave propagation in abstract dynamical system with boundary control. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 8-32. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/
[1] M. I. Belishev, “Ob odnom podkhode k mnogomernym obratnym zadacham dlya volnovogo uravneniya”, Dokl. Akad. Nauk SSSR, 297:3 (1987), 524–527
[2] M. I. Belishev, “Dynamical systems with boundary control: models and characterization of inverse data”, Inverse Problems, 17 (2001), 659–682 | DOI | MR | Zbl
[3] M. I. Belishev, “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl
[4] M. I. Belishev, “Boundary control method”, Encyclopedia of Applied and Computational Mathematics, v. 1, 142–146
[5] M. I. Belishev, M. N. Demchenko, “Dinamicheskaya sistema s granichnym upravleniem, assotsiirovannaya s simmetricheskim poluogranichennym operatorom”, Zap. nauchn. semin. POMI, 409, 2012, 17–39
[6] M. I. Belishev, S. A. Simonov, “Volnovaya model operatora Shturma-Liuvillya na poluosi”, Algebra i analiz, 29:2 (2017), 3–33
[7] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskikh prostranstv”, Funkts. analiz i ego pril., 53:2 (2019), 3–10 | DOI | MR | Zbl
[8] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskogo prostranstva s meroi i ee prilozhenie”, Mat. Sb., 211:4 (2020), 44–62 | DOI | MR | Zbl
[9] M. I. Belishev, S. A. Simonov, “Ob evolyutsionnoi dinamicheskoi sisteme pervogo poryadka s granichnym upravleniem”, Zap. nauchn. cemin. POMI, 483, 2019, 41–54
[10] M. I. Belishev, A. S. Blagoveschenskii, Dinamicheskie obratnye zadachi teorii voln, SPbGU, Sankt-Peterburg, 1999
[11] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningradskogo Universiteta, L., 1980
[12] A. S. Blagoveschenskii, “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Trudy MIAN im. V. A. Steklova, 115, 1971, 28–38
[13] A. S. Blagovestchenskii, Inverse Problems of Wave Processes, VSP, Netherlands, 2001
[14] M. N. Demchenko, “O chastichno izometricheskom preobrazovanii solenoidalnykh vektornykh polei”, Zap. nauchn. semin. POMI, 370, 2009, 22–43
[15] V. F. Derkach, M. M. Malamud, Teoriya rasshirenii simmetrichnykh operatorov i granichnye zadachi, Ki\"iv, 2017
[16] R. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR
[17] I. Lasiecka, R. Triggiani, “Recent advances in regularity of second-order hyperbolic mixed problems, and applications”, Dynamics reported. Expositions in dynamical systems, v. 3, eds. Christopher K. R. T., Berlin, 1994, 104–162 | Zbl
[18] I. Lasiecka, R. Triggiani, “Exact controllability of the Euler–Bernoully equation with boundary controls for displacement and moment”, J. Math. Analysis Appl., 146:1 (1990) | DOI | MR | Zbl
[19] D. Tataru, “Unique continuation for solutions to PDE's: between Hormander's and Holmgren's theorem”, Comm. PDE, 20 (1995), 855–884 | DOI | MR | Zbl
[20] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Trudy Moskovskogo matematicheskogo obschestva, 1, 1952, 187–246 | MR | Zbl