Wave propagation in abstract dynamical system with boundary control
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 8-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $L_0$ be a positive definite operator in a Hilbert space $\mathscr H$ with the defect indexes $n_\pm\geqslant 1$ and let $\{{\rm Ker }L^*_0;\Gamma_1,\Gamma_2\}$ be its canonical (by M. I. Vishik) boundary triple. The paper deals with an evolutionary dynamical system of the form \begin{align*} & u_{tt}+{L_0^*} u=0 &&\text{in}\quad {\mathscr H}, t>0;\\ & u\big|_{t=0}=u_t\big|_{t=0}=0 && {\rm in }\quad {\mathscr H};\\ & \Gamma_1 u=f(t), && t\geqslant 0, \end{align*} where $f$ is a boundary control (a ${\rm Ker }L^*_0$-valued function of time), $u=u^f(t)$ is a trajectory. Some of the general properties of such systems are considered. An abstract analog of the finiteness principle of wave propagation speed is revealed.
@article{ZNSL_2023_521_a1,
     author = {M. I. Belishev},
     title = {Wave propagation in abstract dynamical system with boundary control},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {8--32},
     year = {2023},
     volume = {521},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - Wave propagation in abstract dynamical system with boundary control
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 8
EP  - 32
VL  - 521
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/
LA  - ru
ID  - ZNSL_2023_521_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%T Wave propagation in abstract dynamical system with boundary control
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 8-32
%V 521
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/
%G ru
%F ZNSL_2023_521_a1
M. I. Belishev. Wave propagation in abstract dynamical system with boundary control. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 8-32. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/

[1] M. I. Belishev, “Ob odnom podkhode k mnogomernym obratnym zadacham dlya volnovogo uravneniya”, Dokl. Akad. Nauk SSSR, 297:3 (1987), 524–527

[2] M. I. Belishev, “Dynamical systems with boundary control: models and characterization of inverse data”, Inverse Problems, 17 (2001), 659–682 | DOI | MR | Zbl

[3] M. I. Belishev, “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl

[4] M. I. Belishev, “Boundary control method”, Encyclopedia of Applied and Computational Mathematics, v. 1, 142–146

[5] M. I. Belishev, M. N. Demchenko, “Dinamicheskaya sistema s granichnym upravleniem, assotsiirovannaya s simmetricheskim poluogranichennym operatorom”, Zap. nauchn. semin. POMI, 409, 2012, 17–39

[6] M. I. Belishev, S. A. Simonov, “Volnovaya model operatora Shturma-Liuvillya na poluosi”, Algebra i analiz, 29:2 (2017), 3–33

[7] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskikh prostranstv”, Funkts. analiz i ego pril., 53:2 (2019), 3–10 | DOI | MR | Zbl

[8] M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskogo prostranstva s meroi i ee prilozhenie”, Mat. Sb., 211:4 (2020), 44–62 | DOI | MR | Zbl

[9] M. I. Belishev, S. A. Simonov, “Ob evolyutsionnoi dinamicheskoi sisteme pervogo poryadka s granichnym upravleniem”, Zap. nauchn. cemin. POMI, 483, 2019, 41–54

[10] M. I. Belishev, A. S. Blagoveschenskii, Dinamicheskie obratnye zadachi teorii voln, SPbGU, Sankt-Peterburg, 1999

[11] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningradskogo Universiteta, L., 1980

[12] A. S. Blagoveschenskii, “O lokalnom metode resheniya nestatsionarnoi obratnoi zadachi dlya neodnorodnoi struny”, Trudy MIAN im. V. A. Steklova, 115, 1971, 28–38

[13] A. S. Blagovestchenskii, Inverse Problems of Wave Processes, VSP, Netherlands, 2001

[14] M. N. Demchenko, “O chastichno izometricheskom preobrazovanii solenoidalnykh vektornykh polei”, Zap. nauchn. semin. POMI, 370, 2009, 22–43

[15] V. F. Derkach, M. M. Malamud, Teoriya rasshirenii simmetrichnykh operatorov i granichnye zadachi, Ki\"iv, 2017

[16] R. Kalman, P. Falb, M. Arbib, Ocherki po matematicheskoi teorii sistem, Mir, M., 1971 | MR

[17] I. Lasiecka, R. Triggiani, “Recent advances in regularity of second-order hyperbolic mixed problems, and applications”, Dynamics reported. Expositions in dynamical systems, v. 3, eds. Christopher K. R. T., Berlin, 1994, 104–162 | Zbl

[18] I. Lasiecka, R. Triggiani, “Exact controllability of the Euler–Bernoully equation with boundary controls for displacement and moment”, J. Math. Analysis Appl., 146:1 (1990) | DOI | MR | Zbl

[19] D. Tataru, “Unique continuation for solutions to PDE's: between Hormander's and Holmgren's theorem”, Comm. PDE, 20 (1995), 855–884 | DOI | MR | Zbl

[20] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Trudy Moskovskogo matematicheskogo obschestva, 1, 1952, 187–246 | MR | Zbl