Wave propagation in abstract dynamical system with boundary control
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 8-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_0$ be a positive definite operator in a Hilbert space $\mathscr H$ with the defect indexes $n_\pm\geqslant 1$ and let $\{{\rm Ker }L^*_0;\Gamma_1,\Gamma_2\}$ be its canonical (by M. I. Vishik) boundary triple. The paper deals with an evolutionary dynamical system of the form \begin{align*} u_{tt}+{L_0^*} u=0 \text{in}\quad {\mathscr H}, t>0;\\ u\big|_{t=0}=u_t\big|_{t=0}=0 {\rm in }\quad {\mathscr H};\\ \Gamma_1 u=f(t), t\geqslant 0, \end{align*} where $f$ is a boundary control (a ${\rm Ker }L^*_0$-valued function of time), $u=u^f(t)$ is a trajectory. Some of the general properties of such systems are considered. An abstract analog of the finiteness principle of wave propagation speed is revealed.
@article{ZNSL_2023_521_a1,
     author = {M. I. Belishev},
     title = {Wave propagation in abstract dynamical system with boundary control},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {8--32},
     publisher = {mathdoc},
     volume = {521},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - Wave propagation in abstract dynamical system with boundary control
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 8
EP  - 32
VL  - 521
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/
LA  - ru
ID  - ZNSL_2023_521_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%T Wave propagation in abstract dynamical system with boundary control
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 8-32
%V 521
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/
%G ru
%F ZNSL_2023_521_a1
M. I. Belishev. Wave propagation in abstract dynamical system with boundary control. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 53, Tome 521 (2023), pp. 8-32. http://geodesic.mathdoc.fr/item/ZNSL_2023_521_a1/