Polynomial structure in determinants for Izergin–Korepin partition function
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 227-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss determinant formulas for the partition function of the six-vertex model with domain wall boundary conditions, which are parametrized by an arbitrary basis of polynomials. In this note we show that our recent result on this problem admits a one-parameter extension.
@article{ZNSL_2023_520_a8,
     author = {A. G. Pronko and V. O. Tarasov},
     title = {Polynomial structure in determinants for {Izergin{\textendash}Korepin} partition function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {227--238},
     year = {2023},
     volume = {520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a8/}
}
TY  - JOUR
AU  - A. G. Pronko
AU  - V. O. Tarasov
TI  - Polynomial structure in determinants for Izergin–Korepin partition function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 227
EP  - 238
VL  - 520
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a8/
LA  - en
ID  - ZNSL_2023_520_a8
ER  - 
%0 Journal Article
%A A. G. Pronko
%A V. O. Tarasov
%T Polynomial structure in determinants for Izergin–Korepin partition function
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 227-238
%V 520
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a8/
%G en
%F ZNSL_2023_520_a8
A. G. Pronko; V. O. Tarasov. Polynomial structure in determinants for Izergin–Korepin partition function. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 227-238. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a8/

[1] V. E. Korepin, “Calculations of norms of Bethe wave functions”, Commun. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[2] A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl

[3] A. G. Izergin, D. A. Coker, V. E. Korepin, “Determinant formula for the six-vertex model”, J. Phys. A, 25 (1992), 4315–4334 | DOI | MR | Zbl

[4] I. Kostov, “Classical limit of the three-point function of $N=4$ supersymmetric Yang-Mills Theory from integrability”, Phys. Rev. Lett., 108 (2012), 261604, arXiv: 1203.6180 | DOI

[5] I. Kostov, “Three-point function of semiclassical states at weak coupling”, J. Phys. A, 45 (2012), 494018, arXiv: 1205.4412 | DOI | MR | Zbl

[6] O. Foda, M. Wheeler, “Partial domain wall partition functions”, JHEP, 213 (2012), 186, arXiv: 1205.4400 | DOI | MR

[7] M. D. Minin, A. G. Pronko, V. O. Tarasov, “Construction of determinants for the six-vertex model with domain wall boundary conditions”, J. Phys. A, 56 (2023), 295204, arXiv: 2304.01824 | DOI | MR

[8] L. A. Takhtadjan, L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg XYZ model”, Russ. Math. Surveys, 34:5 (1979), 11–68 | DOI | MR

[9] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl