Polynomial structure in determinants for Izergin--Korepin partition function
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 227-238
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss determinant formulas for the partition function of the six-vertex model with domain wall boundary conditions, which are parametrized by an arbitrary basis of polynomials. In this note we show that our recent result on this problem admits a one-parameter extension.
@article{ZNSL_2023_520_a8,
author = {A. G. Pronko and V. O. Tarasov},
title = {Polynomial structure in determinants for {Izergin--Korepin} partition function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {227--238},
publisher = {mathdoc},
volume = {520},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a8/}
}
TY - JOUR AU - A. G. Pronko AU - V. O. Tarasov TI - Polynomial structure in determinants for Izergin--Korepin partition function JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 227 EP - 238 VL - 520 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a8/ LA - en ID - ZNSL_2023_520_a8 ER -
A. G. Pronko; V. O. Tarasov. Polynomial structure in determinants for Izergin--Korepin partition function. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 227-238. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a8/