One-parameter meromorphic solution of the degenerate third Painlev\'e equation with formal monodromy parameter $a=\pm\mathrm{i}/2$ vanishing at the origin
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 189-226

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there exists a one-parameter family of meromorphic solutions $u(\tau)$ vanishing at $\tau=0$ of the degenerate third Painlevé equation, \begin{equation*} u^{\prime \prime}(\tau) = \frac{(u^{\prime}(\tau))^{2}}{u(\tau)} - \frac{u^{\prime}(\tau)}{\tau} + \frac{1}{\tau} \left(-8 \varepsilon (u(\tau))^{2} + 2ab \right) + \frac{b^{2}}{u(\tau)},\ \varepsilon=\pm1,\ \varepsilon b>0, \end{equation*} for formal monodromy parameter $a=\pm\mathrm{i}/2$. We study number-theoretic properties of the coefficients of the Taylor-series expansion of $u(\tau)$ at $\tau=0$ and its asymptotic behaviour as $\tau\to+\infty$. These asymptotics are visualized for generic initial data.
@article{ZNSL_2023_520_a7,
     author = {A. V. Kitaev and A. Vartanian},
     title = {One-parameter meromorphic solution of the degenerate third {Painlev\'e} equation with formal monodromy parameter $a=\pm\mathrm{i}/2$ vanishing at the origin},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {189--226},
     publisher = {mathdoc},
     volume = {520},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a7/}
}
TY  - JOUR
AU  - A. V. Kitaev
AU  - A. Vartanian
TI  - One-parameter meromorphic solution of the degenerate third Painlev\'e equation with formal monodromy parameter $a=\pm\mathrm{i}/2$ vanishing at the origin
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 189
EP  - 226
VL  - 520
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a7/
LA  - en
ID  - ZNSL_2023_520_a7
ER  - 
%0 Journal Article
%A A. V. Kitaev
%A A. Vartanian
%T One-parameter meromorphic solution of the degenerate third Painlev\'e equation with formal monodromy parameter $a=\pm\mathrm{i}/2$ vanishing at the origin
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 189-226
%V 520
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a7/
%G en
%F ZNSL_2023_520_a7
A. V. Kitaev; A. Vartanian. One-parameter meromorphic solution of the degenerate third Painlev\'e equation with formal monodromy parameter $a=\pm\mathrm{i}/2$ vanishing at the origin. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 189-226. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a7/