Three-loop divergences in effective action of $4$-dimensional Yang--Mills theory with cutoff regularization: $\Gamma_4^2$-contribution
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 162-188

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study three-loop divergences in the effective action of the four-dimensional Yang–Mills theory from the $\Gamma_4^2$-contribution. As the regularization we use a cutoff (deformation of the Green's function) in the coordinate representation.
@article{ZNSL_2023_520_a6,
     author = {A. V. Ivanov and N. V. Kharuk},
     title = {Three-loop divergences in effective action of $4$-dimensional {Yang--Mills} theory with cutoff regularization: $\Gamma_4^2$-contribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--188},
     publisher = {mathdoc},
     volume = {520},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a6/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - N. V. Kharuk
TI  - Three-loop divergences in effective action of $4$-dimensional Yang--Mills theory with cutoff regularization: $\Gamma_4^2$-contribution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 162
EP  - 188
VL  - 520
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a6/
LA  - ru
ID  - ZNSL_2023_520_a6
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A N. V. Kharuk
%T Three-loop divergences in effective action of $4$-dimensional Yang--Mills theory with cutoff regularization: $\Gamma_4^2$-contribution
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 162-188
%V 520
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a6/
%G ru
%F ZNSL_2023_520_a6
A. V. Ivanov; N. V. Kharuk. Three-loop divergences in effective action of $4$-dimensional Yang--Mills theory with cutoff regularization: $\Gamma_4^2$-contribution. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 162-188. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a6/