Three-loop divergences in effective action of $4$-dimensional Yang–Mills theory with cutoff regularization: $\Gamma_4^2$-contribution
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 162-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, we study three-loop divergences in the effective action of the four-dimensional Yang–Mills theory from the $\Gamma_4^2$-contribution. As the regularization we use a cutoff (deformation of the Green's function) in the coordinate representation.
@article{ZNSL_2023_520_a6,
     author = {A. V. Ivanov and N. V. Kharuk},
     title = {Three-loop divergences in effective action of $4$-dimensional {Yang{\textendash}Mills} theory with cutoff regularization: $\Gamma_4^2$-contribution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {162--188},
     year = {2023},
     volume = {520},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a6/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - N. V. Kharuk
TI  - Three-loop divergences in effective action of $4$-dimensional Yang–Mills theory with cutoff regularization: $\Gamma_4^2$-contribution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 162
EP  - 188
VL  - 520
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a6/
LA  - ru
ID  - ZNSL_2023_520_a6
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A N. V. Kharuk
%T Three-loop divergences in effective action of $4$-dimensional Yang–Mills theory with cutoff regularization: $\Gamma_4^2$-contribution
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 162-188
%V 520
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a6/
%G ru
%F ZNSL_2023_520_a6
A. V. Ivanov; N. V. Kharuk. Three-loop divergences in effective action of $4$-dimensional Yang–Mills theory with cutoff regularization: $\Gamma_4^2$-contribution. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 162-188. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a6/

[1] C. N. Yang, R. Mills, “Conservation of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96 (1954), 191–195 | DOI | MR | Zbl

[2] A. Trautman, “The geometry of gauge fields”, Czechoslovak J. Phys., 29:1 (1979), 107–116 | DOI | MR

[3] O. Babelon, C. M. Viallet, “The Riemannian geometry of the configuration space of gauge theories”, Comm. Math. Phys., 81:4 (1981), 515–525 | DOI | MR | Zbl

[4] L. D. Faddeev, V. Popov, “Feynman diagrams for Yang–Mills field”, Phys. Lett. B, 25 (1967), 29–30 | DOI

[5] L. D. Faddeev, A. A. Slavnov, Gauge Fields$:$ An Introduction to Quantum Theory, Frontiers in Physics, 83, Addison-Wesley, 1991 | MR

[6] L. D. Faddeev, “Mass in quantum Yang-Mills theory $($comment on a Clay millenium problem$)$”, Bull. Braz. Math. Soc. (N. S.), 33:2 (2002), 201–212 | DOI | MR | Zbl

[7] L. D. Faddeev, “Scenario for the renormalization in the 4D Yang–Mills theory”, Int. J. Mod. Phys. A, 31 (2016), 1630001 | DOI | MR | Zbl

[8] S. E. Derkachev, A. V. Ivanov, L. D. Faddeev, “Stsenarii dlya perenormirovki v kvantovoi teorii Yanga-Millsa v chetyrekhmernom prostranstve-vremeni”, TMF, 192:2 (2017), 227–234 | DOI | MR | Zbl

[9] B. S. DeWitt, “Quantum theory of gravity. 2. The manifestly covariant theory”, Phys. Rev., 162 (1967), 1195–1239 | DOI | Zbl

[10] B. S. DeWitt, “Quantum theory of gravity. 3. Applications of the covariant theory”, Phys. Rev., 162 (1967), 1239–1256 | DOI | Zbl

[11] G. 't Hooft, “The background field method in gauge field theories”, Karpacz 1975 Proceedings, v. 1, Acta Universitatis Wratislaviensis, 368, Wroclaw, 1976, 345–369

[12] C. H. Oh, “Two-loop approximation of the effective potential for the Yang–Mills field”, Prog. Theor. Phys., 55:4 (1976), 1251–1258 | DOI

[13] L. F. Abbott, “Introduction to the background field method”, Acta Phys. Polon. B, 13:1–2 (1982), 33–50 | MR

[14] I. Ya. Arefeva, A. A. Slavnov, L. D. Faddeev, “Proizvodyaschii funktsional dlya S-matritsy v kalibrovochno-invariantnykh teoriyakh”, TMF, 21:3 (1974), 311–321

[15] A. V. Ivanov, N. V. Kharuk, “Quantum equation of motion and two-loop cutoff renormalization for $\phi^3$ model”, Zap. nauchn. semin. POMI, 487, 2019, 151–166 | MR

[16] A. V. Ivanov, N. V. Kharuk, “Two-loop cutoff renormalization of 4-D Yang–Mills effective action”, J. Phys. G: Nucl. Part. Phys., 48 (2020), 015002 | DOI

[17] A. V. Ivanov, N. V. Kharuk, “Formula for two-loop divergent part of 4-D Yang–Mills effective action”, Eur. Phys. J. C, 82 (2022), 997 | DOI

[18] A. V. Ivanov, “Explicit Cutoff Regularization in Coordinate Representation”, J. Phys. A: Math. Theor., 55 (2022), 495401 | DOI | MR | Zbl

[19] J. C. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group and the Operator-Product Expansion, Cambridge University Press, 1984 | MR | Zbl

[20] O. I. Zavialov, Renormalized Quantum Field Theory, Kluwer Academic Publishers, Dodrecht–Boston, 1990 | MR | Zbl

[21] D. I. Kazakov, Radiative corrections, divergences, regularization, renormalization, renormalization group and all that in examples in quantum field theory, arXiv: 0901.2208

[22] M. Oleszczuk, “A symmetry-preserving cut-off regularization”, Z. Phys. C, 64 (1994), 533–538 | DOI

[23] Sen-Ben Liao, “Operator cutoff regularization and renormalization group in Yang-Mills theory”, Phys. Rev. D, 56 (1997), 5008–5033 | DOI

[24] G. Cynolter, E. Lendvai, Cutoff regularization method in gauge theories, arXiv: 1509.07407

[25] N. V. Kharuk, “Regulyarizatsii smeshannogo tipa i nelogarifmicheskie singulyarnosti”, Zap. nauchn. semin. POMI, 494, 2020, 242–249 | MR

[26] G. 't Hooft, “Renormalization of massless Yang–Mills fields”, Nucl. Phys. B, 33 (1971), 173–199 | DOI

[27] C. G. Bollini, J. J. Giambiagi, “Dimensional renormalization: the number of dimensions as a regularizing parameter”, Nuovo Cim. B, 12 (1972), 20–26 | DOI

[28] I. Jack, H. Osborn, “Two-loop background field calculations for arbitrary background fields”, Nucl. Phys. B, 207 (1982), 474–504 | DOI

[29] J. P. Bornsen, A. E. M. van de Ven, “Three-loop Yang–Mills $\beta$-function via the covariant background field method”, Nucl. Phys. B, 657 (2003), 257–303 | DOI | MR | Zbl

[30] A. V. Ivanov, “O razmernoi regulyarizatsii na primere teorii Yanga–Millsa”, Zap. nauchn. semin. POMI, 465, 2017, 147–156

[31] A. V. Ivanov, “About renormalized effective action for the Yang–Mills theory in four-dimensional space-time”, XXth International Seminar on High Energy Physics (QUARKS-2018), EPJ Web Conf., 191, 2018, 06001, 7 pp. | DOI

[32] S. L. Shatashvili, “Dvukhpetlevoe priblizhenie v formalizme vneshnego polya”, TMF, 58:2 (1984), 219–228

[33] M. Nakahara, Geometry, topology and physics, Second Ed, CRC Press, 2003 | MR

[34] A. V. Ivanov, N. V. Kharuk, “Ordered exponential and its features in Yang–Mills effective action”, Commun. Theor. Phys., 2023 | DOI | MR

[35] M. Lüscher, “Dimensional regularisation in the presence of large background fields”, Ann. Physics, 142 (1982), 359–392 | DOI | MR

[36] N.V. Kharuk, “Nulevye mody operatora Laplasa v dvukhpetlevykh vychisleniyakh v teorii Yanga–Millsa”, Zap. nauchn. semin. POMI, 509, 2021, 216–226

[37] V. Fock, “Die Eigenzeit in der Klassischen- und in der Quanten- mechanik”, Sow. Phys., 12 (1937), 404–425 | Zbl

[38] P. B. Gilkey, “The spectral geometry of a Riemannian manifold”, J. Differ. Geom., 10 (1975), 601–618 | DOI | MR | Zbl

[39] A. O. Barvinsky, G. A. Vilkovisky, “The Generalized Schwinger–Dewitt technique in gauge theories and quantum gravity”, Phys. Rept., 119 (1985), 1–74 | DOI | MR

[40] D. V. Vassilevich, “Heat kernel expansion: User's manual”, Phys. Rept., 388 (2003), 279–360 | DOI | MR | Zbl

[41] D. Fursaev, D. Vassilevich, Operators, Geometry and Quanta: Methods of Spectral Geometry in Quantum Field Theory, Springer, 2011, 1–304 | MR

[42] A. V. Ivanov, “Diagrammatika teplovogo yadra kovariantnogo operatora Laplasa”, TMF, 198:1 (2019), 113–132 | DOI | MR | Zbl

[43] A. V. Ivanov, N. V. Kharuk, “Non-recursive formula for trace of heat kernel”, Days on Diffraction (DD), IEEE, 2019, 74–77

[44] A. V. Ivanov, N. V. Kharuk, “Teplovoe yadro: metod sobstvennogo vremeni, kalibrovka Foka-Shvingera, integral po putyam i liniya Vilsona”, TMF, 205:2 (2020), 242–261 | DOI | MR | Zbl

[45] A. V. Ivanov, N. V. Kharuk, “Special functions for heat kernel expansion”, Eur. Phys. J. Plus, 137 (2022), 1060 | DOI | MR

[46] A. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers, London, UK, 1987 | MR | Zbl

[47] P. V. Akacevich, A. V. Ivanov, On two-loop effective action of 2D sigma model, arXiv: 2304.02374