@article{ZNSL_2023_520_a5,
author = {E. Sh. Gutshabash},
title = {Legendre transformation in {Born{\textendash}Infeld} models, {Monge{\textendash}Ampere} equation and exact solutions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--161},
year = {2023},
volume = {520},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a5/}
}
E. Sh. Gutshabash. Legendre transformation in Born–Infeld models, Monge–Ampere equation and exact solutions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 151-161. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a5/
[1] M. Born, L. Infeld, “Fondation of the New Field Theory”, Proc. R. Soc. Lond. A, 144 (1934), 425 | DOI | Zbl
[2] E. S.Fradkin, A. A.Tseitlin, “Non-Linear Electrodynamics from Quantized Strings”, Phys. Lett. B, 163 (1985), 123 | DOI | MR | Zbl
[3] R. Ferraro, F. Fiorini, “Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime”, Phys. Lett B, 692 (2010), 206 | DOI | MR
[4] J. C. Brunelli, M. Gurses, K. Zheltukhin, “On the integrability of a Class of Monge-Ampere Equations”, Rev. Math. Phys., 13 (2001), 529 | DOI | MR | Zbl
[5] M. Arik, F. Neyzi, Y. Nutku, P. Olver. J. M. Verosky, “Multi-Hamiltonian Structure of the Born-Infeld Equation”, IMA Series, 497 (1989) | MR
[6] E. Sh. Gutshabash, P. P. Kulish, “Preobrazovanie Beklunda i novye tochnye resheniya modeli Borna–Infelda”, Zap. nauchn. semin. POMI, 465, 2017, 135–146
[7] B. M. Barbashov, N. A. Chernikov, “Reshenie i kvantovanie nelineinoi dvumernoi modeli tipa polya Borna-Infelda”, ZhETF, 50 (1966), 1296–1308
[8] A. D. Polyanin, V. F. Zaitsev, A. I. Zhurov, Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005
[9] E. Sh. Gutshabash, “Nelineinaya sigma-model, metod Zakharova–Shabata i novye tochnye formy minimalnoi poverkhnosti v ${\mathbb R^3}$”, Pisma v ZhETF, 99 (2014), 827
[10] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970
[11] Dzh. Uizem, Lineinye i nelineinye volny, Nauka, M., 1974
[12] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR
[13] O. F. Menshikh, “Vzaimodeistvie finitnykh uedinennykh voln dlya uravnenii tipa Borna–Infelda”, TMF, 79 (1989), 16 | MR
[14] S. V. Khabirov, “Neizentropicheskie odnomernye dvizheniya gaza, postroennye s pomoschyu kontaktnoi gruppy neodnorodnogo uravneniya Monzha–Ampera”, Mat.sb., 181 (1990), 1607–1622 | Zbl
[15] A. Figalli, The Monge–Ampere Equation and Its Applications, European mathematical Society, 2017 | MR | Zbl
[16] O. I. Mokhov, Simplekticheskaya i Puassonova geometriya na prostranstvakh petel gladkikh mnogoobrazii i integriruemye uravneniya, Institut kompyuternykh issledovanii, M.-Izhevsk, 2004 | MR
[17] N. Manganaro, A. Rizzo, P. Vergallo, Solutions to the wave equation for commuting flows of dispersionless PDEs, arXiv: 2212.10130
[18] W. I. Fushchich, V. M. Shtelen, N. I. Serov, Symmetry Analysis and Exact Solutions of the Equations of Mathematical Physics, Kluwer, Dordrecht, 1993 | MR
[19] M. Nadjafikhah, S. R. Hejazi, Group Analysis of Born-Infeld Equation, arXiv: 1009.5490