Legendre transformation in Born–Infeld models, Monge–Ampere equation and exact solutions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 151-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Gutshabash E. Sh. Legendre transformation in Born–Infeld models, Monge–Ampere equation and exact solutions. Exact solutions of the equation obtained by applying the Legendre transformation to the Born–Infeld equation are constructed, and the quasilinear system arising in connection with this transformation is investigated. Based on the linearization of the Monge–Ampere equation, some of its particular solutions are calculated.
@article{ZNSL_2023_520_a5,
     author = {E. Sh. Gutshabash},
     title = {Legendre transformation in {Born{\textendash}Infeld} models, {Monge{\textendash}Ampere} equation and exact solutions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--161},
     year = {2023},
     volume = {520},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a5/}
}
TY  - JOUR
AU  - E. Sh. Gutshabash
TI  - Legendre transformation in Born–Infeld models, Monge–Ampere equation and exact solutions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 151
EP  - 161
VL  - 520
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a5/
LA  - ru
ID  - ZNSL_2023_520_a5
ER  - 
%0 Journal Article
%A E. Sh. Gutshabash
%T Legendre transformation in Born–Infeld models, Monge–Ampere equation and exact solutions
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 151-161
%V 520
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a5/
%G ru
%F ZNSL_2023_520_a5
E. Sh. Gutshabash. Legendre transformation in Born–Infeld models, Monge–Ampere equation and exact solutions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 151-161. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a5/

[1] M. Born, L. Infeld, “Fondation of the New Field Theory”, Proc. R. Soc. Lond. A, 144 (1934), 425 | DOI | Zbl

[2] E. S.Fradkin, A. A.Tseitlin, “Non-Linear Electrodynamics from Quantized Strings”, Phys. Lett. B, 163 (1985), 123 | DOI | MR | Zbl

[3] R. Ferraro, F. Fiorini, “Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime”, Phys. Lett B, 692 (2010), 206 | DOI | MR

[4] J. C. Brunelli, M. Gurses, K. Zheltukhin, “On the integrability of a Class of Monge-Ampere Equations”, Rev. Math. Phys., 13 (2001), 529 | DOI | MR | Zbl

[5] M. Arik, F. Neyzi, Y. Nutku, P. Olver. J. M. Verosky, “Multi-Hamiltonian Structure of the Born-Infeld Equation”, IMA Series, 497 (1989) | MR

[6] E. Sh. Gutshabash, P. P. Kulish, “Preobrazovanie Beklunda i novye tochnye resheniya modeli Borna–Infelda”, Zap. nauchn. semin. POMI, 465, 2017, 135–146

[7] B. M. Barbashov, N. A. Chernikov, “Reshenie i kvantovanie nelineinoi dvumernoi modeli tipa polya Borna-Infelda”, ZhETF, 50 (1966), 1296–1308

[8] A. D. Polyanin, V. F. Zaitsev, A. I. Zhurov, Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005

[9] E. Sh. Gutshabash, “Nelineinaya sigma-model, metod Zakharova–Shabata i novye tochnye formy minimalnoi poverkhnosti v ${\mathbb R^3}$”, Pisma v ZhETF, 99 (2014), 827

[10] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970

[11] Dzh. Uizem, Lineinye i nelineinye volny, Nauka, M., 1974

[12] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978 | MR

[13] O. F. Menshikh, “Vzaimodeistvie finitnykh uedinennykh voln dlya uravnenii tipa Borna–Infelda”, TMF, 79 (1989), 16 | MR

[14] S. V. Khabirov, “Neizentropicheskie odnomernye dvizheniya gaza, postroennye s pomoschyu kontaktnoi gruppy neodnorodnogo uravneniya Monzha–Ampera”, Mat.sb., 181 (1990), 1607–1622 | Zbl

[15] A. Figalli, The Monge–Ampere Equation and Its Applications, European mathematical Society, 2017 | MR | Zbl

[16] O. I. Mokhov, Simplekticheskaya i Puassonova geometriya na prostranstvakh petel gladkikh mnogoobrazii i integriruemye uravneniya, Institut kompyuternykh issledovanii, M.-Izhevsk, 2004 | MR

[17] N. Manganaro, A. Rizzo, P. Vergallo, Solutions to the wave equation for commuting flows of dispersionless PDEs, arXiv: 2212.10130

[18] W. I. Fushchich, V. M. Shtelen, N. I. Serov, Symmetry Analysis and Exact Solutions of the Equations of Mathematical Physics, Kluwer, Dordrecht, 1993 | MR

[19] M. Nadjafikhah, S. R. Hejazi, Group Analysis of Born-Infeld Equation, arXiv: 1009.5490