@article{ZNSL_2023_520_a4,
author = {T. A. Bolokhov},
title = {Examples of zero modes of the {Faddeev{\textendash}Popov} operator for the $SU(2)$ gauge field},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {139--150},
year = {2023},
volume = {520},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a4/}
}
T. A. Bolokhov. Examples of zero modes of the Faddeev–Popov operator for the $SU(2)$ gauge field. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 139-150. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a4/
[1] V. N. Popov, L. D. Faddeev, Teoriya vozmuschenii dlya kalibrovochno-invariantnykh polei, Preprint ITF-67-036, Kiev, 1967
[2] J. Schwinger, “Non-Abelian gauge fields. Relativistic invariance”, Phys. Rev., 127 (1962), 324–330 | DOI | MR | Zbl
[3] N. H. Christ, T. D. Lee, “Operator ordering and Feynman rules in Gauge theories”, Phys. Rev. D, 22 (1980), 970–972 | DOI | MR
[4] V. N. Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139 (1978), 1–19 | DOI | MR
[5] F. Henyey, “Gribov ambiguity without topological charge”, Phys. Rev. D, 20 (1979), 1460 | DOI
[6] A. Ilderton, M. Lavelle, D. McMullan, “Colour, copies and confinement”, JHEP, 0703 (2007), 044, arXiv: hep-th/0701168 | DOI | MR
[7] R. R. Landim, L. C. Q. Vilar, O. S. Ventura, V. E. R. Lemes, “On the zero modes of the Faddeev-Popov operator in the Landau gauge”, J. Math. Phys., 55 (2014), 022901 | DOI | MR | Zbl
[8] R. D. Rikhtmaier, Printsipy sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1982 | MR
[9] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990
[10] E. Hille, Ordinary differential equations in the complex domain, Dover Books on Mathematics, 1976, 374–401 | MR
[11] A. B. Olde Daalhuis, Hypergeometric function, NIST Handbook of Mathematical Functions, eds. F. W. J. Olver, D. M. Lozier, R. F. Boisvert, C. W. Clark, Cambridge University Press | MR