Scalar product of the five-vertex model and complete symmetric polynomials
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 124-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The scalar product of the state-vectors of the exactly solvable five-vertex model with the fixed boundary conditions is considered. Various relations including those in terms of complete symmetric polynomials are derived. The limiting forms of the obtained answers may be interpreted in terms of random walks on a square grid.
@article{ZNSL_2023_520_a3,
     author = {N. M. Bogolyubov and C. L. Malyshev},
     title = {Scalar product of the five-vertex model and complete symmetric polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--138},
     year = {2023},
     volume = {520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a3/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - C. L. Malyshev
TI  - Scalar product of the five-vertex model and complete symmetric polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 124
EP  - 138
VL  - 520
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a3/
LA  - en
ID  - ZNSL_2023_520_a3
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A C. L. Malyshev
%T Scalar product of the five-vertex model and complete symmetric polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 124-138
%V 520
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a3/
%G en
%F ZNSL_2023_520_a3
N. M. Bogolyubov; C. L. Malyshev. Scalar product of the five-vertex model and complete symmetric polynomials. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 124-138. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a3/

[1] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl

[2] A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl

[3] N. Bogoliubov, A. Pronko, M. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A: Math. Gen., 35 (2002), 5525–5541 | DOI | MR | Zbl

[4] N. M. Bogoliubov, “Four-vertex model and random tilings”, Theor. Math. Phys., 155 (2008), 523–535 | DOI | MR | Zbl

[5] N. M. Bogolyubov, “Five-vertex model with fixed boundary conditions”, St. Petersburg Math. J., 21 (2010), 407–421 | DOI | MR | Zbl

[6] A. V. Kitaev, A. G. Pronko, “Emptiness formation probability of the six-vertex model and the sixth Painlevé equation”, Comm. Math. Phys., 345 (2016), 305–354 | DOI | MR | Zbl

[7] N. M. Bogoliubov, “Four-Vertex Model in the Linearly Growing External Field under the Fixed and Periodic Boundary Conditions”, Physics of Particles and Nuclei, 51 (2020), 429–433 | DOI

[8] N. M. Bogolyubov, A. G. Pronko, “One-point function of the four-vertex model”, Zap. Nauchn. Semin. POMI, 509 (2021), 39–53 | MR

[9] R. Stanley, Enumerative combinatorics, v. 1, Cambridge University Press, Cambridge, 1996 ; т. 2, 1999 | MR

[10] G. Kuperberg, “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139–150 | DOI | MR | Zbl

[11] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[12] N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856 | DOI | MR | Zbl

[13] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, 1995 | MR | Zbl

[14] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl

[15] N. Reshetikhin, A. Sridhar, “Integrability of limit shapes of the six vertex model”, Comm. Math. Phys., 56 (2017), 535–565 | DOI | MR

[16] I. Lyberg, V. Korepin, G. Ribeiro, J. Viti, “Phase separation in the six-vertex model with a variety of boundary conditions”, J. Math. Phys., 59 (2018), 053301 | DOI | MR | Zbl

[17] F. Colomo, A. G. Pronko, A. Sportiello, “Arctic curve of the free-fermion six-vertex model in an L-shaped domain”, J. Stat. Phys., 174 (2019), 1–27 | DOI | MR | Zbl

[18] R. G. Baxter, Exactly Solved Models in Statistical Mechanics, Academic press, San Diego, 1982 | MR | Zbl

[19] J. Noh, D. Kim, “Interacting domain walls and the five-vertex model”, Phys. Rev. E, 49 (1994), 1943–1961 | DOI

[20] J. de Gier, R. Kenyon, S. S. Watson, “Limit shapes for the asymmetric five vertex model”, Commun. Math. Phys., 385 (2021), 793–836 | DOI | MR | Zbl

[21] L. D. Faddeev, “Quantum Inverse Scattering Method”, Sov. Sci. Rev. Math., C1 (1980), 107–160

[22] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[23] K. Motegi, K. Sakai, “Vertex models, TASEP and Grothendieck polynomials”, J. Phys. A: Math. Theor., 46 (2013), 355201 | DOI | MR | Zbl

[24] I. N. Burenev, A. G. Pronko, “Determinant formulas for the five-vertex model”, J. Phys. A: Math. Theor., 54 (2021), 055008 | DOI | MR | Zbl

[25] N. M. Bogoliubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 05200 | MR

[26] N. M. Bogoliubov, C. Malyshev, “Zero range process and multi-dimensional random walks”, SIGMA, 13 (2017), 056 | MR | Zbl