@article{ZNSL_2023_520_a3,
author = {N. M. Bogolyubov and C. L. Malyshev},
title = {Scalar product of the five-vertex model and complete symmetric polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--138},
year = {2023},
volume = {520},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a3/}
}
N. M. Bogolyubov; C. L. Malyshev. Scalar product of the five-vertex model and complete symmetric polynomials. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 124-138. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a3/
[1] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[2] A. G. Izergin, “Partition function of the six-vertex model in the finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl
[3] N. Bogoliubov, A. Pronko, M. Zvonarev, “Boundary correlation functions of the six-vertex model”, J. Phys. A: Math. Gen., 35 (2002), 5525–5541 | DOI | MR | Zbl
[4] N. M. Bogoliubov, “Four-vertex model and random tilings”, Theor. Math. Phys., 155 (2008), 523–535 | DOI | MR | Zbl
[5] N. M. Bogolyubov, “Five-vertex model with fixed boundary conditions”, St. Petersburg Math. J., 21 (2010), 407–421 | DOI | MR | Zbl
[6] A. V. Kitaev, A. G. Pronko, “Emptiness formation probability of the six-vertex model and the sixth Painlevé equation”, Comm. Math. Phys., 345 (2016), 305–354 | DOI | MR | Zbl
[7] N. M. Bogoliubov, “Four-Vertex Model in the Linearly Growing External Field under the Fixed and Periodic Boundary Conditions”, Physics of Particles and Nuclei, 51 (2020), 429–433 | DOI
[8] N. M. Bogolyubov, A. G. Pronko, “One-point function of the four-vertex model”, Zap. Nauchn. Semin. POMI, 509 (2021), 39–53 | MR
[9] R. Stanley, Enumerative combinatorics, v. 1, Cambridge University Press, Cambridge, 1996 ; т. 2, 1999 | MR
[10] G. Kuperberg, “Another proof of the alternating-sign matrix conjecture”, Int. Math. Res. Not., 1996 (1996), 139–150 | DOI | MR | Zbl
[11] D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[12] N. M. Bogoliubov, C. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70 (2015), 789–856 | DOI | MR | Zbl
[13] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, 1995 | MR | Zbl
[14] F. Colomo, A. G. Pronko, “The arctic curve of the domain-wall six-vertex model”, J. Stat. Phys., 138 (2010), 662–700 | DOI | MR | Zbl
[15] N. Reshetikhin, A. Sridhar, “Integrability of limit shapes of the six vertex model”, Comm. Math. Phys., 56 (2017), 535–565 | DOI | MR
[16] I. Lyberg, V. Korepin, G. Ribeiro, J. Viti, “Phase separation in the six-vertex model with a variety of boundary conditions”, J. Math. Phys., 59 (2018), 053301 | DOI | MR | Zbl
[17] F. Colomo, A. G. Pronko, A. Sportiello, “Arctic curve of the free-fermion six-vertex model in an L-shaped domain”, J. Stat. Phys., 174 (2019), 1–27 | DOI | MR | Zbl
[18] R. G. Baxter, Exactly Solved Models in Statistical Mechanics, Academic press, San Diego, 1982 | MR | Zbl
[19] J. Noh, D. Kim, “Interacting domain walls and the five-vertex model”, Phys. Rev. E, 49 (1994), 1943–1961 | DOI
[20] J. de Gier, R. Kenyon, S. S. Watson, “Limit shapes for the asymmetric five vertex model”, Commun. Math. Phys., 385 (2021), 793–836 | DOI | MR | Zbl
[21] L. D. Faddeev, “Quantum Inverse Scattering Method”, Sov. Sci. Rev. Math., C1 (1980), 107–160
[22] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[23] K. Motegi, K. Sakai, “Vertex models, TASEP and Grothendieck polynomials”, J. Phys. A: Math. Theor., 46 (2013), 355201 | DOI | MR | Zbl
[24] I. N. Burenev, A. G. Pronko, “Determinant formulas for the five-vertex model”, J. Phys. A: Math. Theor., 54 (2021), 055008 | DOI | MR | Zbl
[25] N. M. Bogoliubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 05200 | MR
[26] N. M. Bogoliubov, C. Malyshev, “Zero range process and multi-dimensional random walks”, SIGMA, 13 (2017), 056 | MR | Zbl