Baxter $Q$-operators in Ruijsenaars--Sutherland hyperbolic systems: one- and two-particle cases
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 50-123
Voir la notice de l'article provenant de la source Math-Net.Ru
In these notes we review the technique of Baxter $Q$-operators in the Ruijsenaars-Sutherland hyperbolic systems in the cases of one and two particles. Using these operators we show in particular that eigenfunctions of these systems admit two dual integral representations and prove their orthogonality and completeness.
@article{ZNSL_2023_520_a2,
author = {N. Belousov and S. Derkachov and S. Kharchev and S. Khoroshkin},
title = {Baxter $Q$-operators in {Ruijsenaars--Sutherland} hyperbolic systems: one- and two-particle cases},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {50--123},
publisher = {mathdoc},
volume = {520},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a2/}
}
TY - JOUR AU - N. Belousov AU - S. Derkachov AU - S. Kharchev AU - S. Khoroshkin TI - Baxter $Q$-operators in Ruijsenaars--Sutherland hyperbolic systems: one- and two-particle cases JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 50 EP - 123 VL - 520 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a2/ LA - en ID - ZNSL_2023_520_a2 ER -
%0 Journal Article %A N. Belousov %A S. Derkachov %A S. Kharchev %A S. Khoroshkin %T Baxter $Q$-operators in Ruijsenaars--Sutherland hyperbolic systems: one- and two-particle cases %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 50-123 %V 520 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a2/ %G en %F ZNSL_2023_520_a2
N. Belousov; S. Derkachov; S. Kharchev; S. Khoroshkin. Baxter $Q$-operators in Ruijsenaars--Sutherland hyperbolic systems: one- and two-particle cases. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 50-123. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a2/