@article{ZNSL_2023_520_a2,
author = {N. Belousov and S. Derkachov and S. Kharchev and S. Khoroshkin},
title = {Baxter $Q$-operators in {Ruijsenaars{\textendash}Sutherland} hyperbolic systems: one- and two-particle cases},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {50--123},
year = {2023},
volume = {520},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a2/}
}
TY - JOUR AU - N. Belousov AU - S. Derkachov AU - S. Kharchev AU - S. Khoroshkin TI - Baxter $Q$-operators in Ruijsenaars–Sutherland hyperbolic systems: one- and two-particle cases JO - Zapiski Nauchnykh Seminarov POMI PY - 2023 SP - 50 EP - 123 VL - 520 UR - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a2/ LA - en ID - ZNSL_2023_520_a2 ER -
%0 Journal Article %A N. Belousov %A S. Derkachov %A S. Kharchev %A S. Khoroshkin %T Baxter $Q$-operators in Ruijsenaars–Sutherland hyperbolic systems: one- and two-particle cases %J Zapiski Nauchnykh Seminarov POMI %D 2023 %P 50-123 %V 520 %U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a2/ %G en %F ZNSL_2023_520_a2
N. Belousov; S. Derkachov; S. Kharchev; S. Khoroshkin. Baxter $Q$-operators in Ruijsenaars–Sutherland hyperbolic systems: one- and two-particle cases. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 50-123. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a2/
[1] E. W. Barnes, “The theory of the double gamma function”, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 196 (1901), 265–387 | MR
[2] N. Belousov, S. Derkachov, S. Kharchev, S. Khoroshkin, Baxter operators in Ruijsenaars hyperbolic system I. Commutativity of $Q$-operators, arXiv: 2303.06383
[3] N. Belousov, S. Derkachov, S. Kharchev, S. Khoroshkin, Baxter operators in Ruijsenaars hyperbolic system II. Bispectral wave functions, arXiv: 2303.06382
[4] L. D. Faddeev, “Discrete Heisenberg–Weyl Group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 | DOI | MR | Zbl
[5] L. D. Faddeev, R. M. Kashaev, A. Yu. Volkov, “Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality”, Commun. Math. Phys., 219 (2001), 199–219 | DOI | MR | Zbl
[6] L. D. Faddeev, O. A. Yakubovsky, Lectures in Quantum Mechanics for Mathematician Students, Student Mathematical Library, 47, AMS, 2009 | DOI | MR
[7] I. M. Gelfand, G. E. Shilov, Generalized Functions: Properties and operations, Academic Press, 1964 | MR | Zbl
[8] M. Hallnäs, S. Ruijsenaars, “Joint eigenfunctions for the relativistic Calogero–Moser Hamiltonians of hyperbolic type: I. First steps”, Int. Math. Res. Notices, 2014, 4400–4456 | DOI | MR | Zbl
[9] M. Hallnäs, S. Ruijsenaars, “A recursive construction of joint eigenfunctions for the hyperbolic nonrelativistic Calogero-Moser Hamiltonians”, Int. Math. Res. Notices, 2015, 10278–10313 | DOI | MR | Zbl
[10] M. Hallnäs, S. Ruijsenaars, “Product formulas for the relativistic and nonrelativistic conical functions”, Adv. Stud. Pure Math., 76 (2018), 195–246 | DOI | MR
[11] S. Kharchev, S. Khoroshkin, Wave function for $GL(n,\mathbb{R})$ hyperbolic Sutherland model, arXiv: 2108.04895
[12] N. Kurokawa, S-Y. Koyama, “Multiple sine functions”, Forum Math., 15 (2003), 839–876 | DOI | MR | Zbl
[13] M. L. Nazarov, E. K. Sklyanin, “Sekiguchi–Debiard operators at infinity”, Commun. Math. Phys., 324 (2013), 831–849 | DOI | MR | Zbl
[14] M. L. Nazarov, E. K. Sklyanin, “Macdonald operators at infinity”, J. Algebraic Combin., 40 (2013), 23–44 | DOI | MR
[15] B. Ponsot, J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of $ U_q (sl(2, \mathbb{R}))$”, Commun. Mathe. Phys., 224 (2001), 613–655 | DOI | MR
[16] S. N. M. Ruijsenaars, “First-order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl
[17] S. N. M. Ruijsenaars, “Zero-eigenvalue eigenfunctions for differences of elliptic relativistic Calogero–Moser Hamiltonians”, Theor. Math. Phys., 146:1 (2006), 25–33 | DOI | Zbl