Boltzmann weights and fusion procedure for the rational seven-vertex SOS model
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 17-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider seven-vertex two-dimensional integrable statistical model. With the help of intertwining vector method we construct its counterpart integrable model of SOS type. More general models of both types are constructed by means of fusion procedure. For SOS models we calculate the Boltzmann weights in terms of terminating hypergeometric series ${}_{9} F_8.$ Then using the similarity transformation for $R$-operators we construct a new family of vertex models containing the $11$-vertex model as the simplest representative. For this new set of models the vertex-SOS correspondence is constructed: we find the intertwining vectors, show that they do not depend on spectral parameter and the SOS statistical weights are similar to those obtained from the $7$-vertex model.
@article{ZNSL_2023_520_a1,
     author = {P. V. Antonenko and P. A. Valinevich},
     title = {Boltzmann weights and fusion procedure for the rational seven-vertex {SOS} model},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--49},
     year = {2023},
     volume = {520},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a1/}
}
TY  - JOUR
AU  - P. V. Antonenko
AU  - P. A. Valinevich
TI  - Boltzmann weights and fusion procedure for the rational seven-vertex SOS model
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 17
EP  - 49
VL  - 520
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a1/
LA  - ru
ID  - ZNSL_2023_520_a1
ER  - 
%0 Journal Article
%A P. V. Antonenko
%A P. A. Valinevich
%T Boltzmann weights and fusion procedure for the rational seven-vertex SOS model
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 17-49
%V 520
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a1/
%G ru
%F ZNSL_2023_520_a1
P. V. Antonenko; P. A. Valinevich. Boltzmann weights and fusion procedure for the rational seven-vertex SOS model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 17-49. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a1/

[1] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[2] E. Date, M. Jimbo, T. Miwa and M. Okado, “Fusion of the eight vertex SOS model”, Lett. Math. Phys., 12 (1986), 209–215 | DOI | MR

[3] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, “Exactly solvable SOS models II”, Adv. Stud. Pure Math., 16 (1988), 17–122 | DOI | MR | Zbl

[4] P. A. Valinevich, P. V. Antonenko, “Universalnaya $R$-matritsa dlya ratsionalnoi semivershinnoi modeli”, Zap. nauchn. sem. POMI, 487, 2019, 100–105

[5] D. Chicherin, S. E. Derkachov, V. P. Spiridonov, “From principal series to finite-dimensional solutions of the Yang-Baxter equation”, SIGMA, 12 (2016), 028 | MR | Zbl

[6] K. Atalikov, A. Zotov, Higher rank generalization of $11$-vertex rational $R$-matrix: IRF-Vertex relations and associative Yang–Baxter equation, arXiv: 2303.02391

[7] S. Derkachov, D. Karakhanyan, R. Kirschner, “Universal $R$ operator with Jordanian deformation of conformal symmetry”, Nucl. Phys. B, 681 (2004), 295–323 | DOI | MR | Zbl

[8] P. A. Valinevich, S. E. Derkachev, A. P. Isaev, A. V. Komisarchuk, “Ortogonalnye polinomy, $6j$-simvoly i statisticheskie vesa SOS-modelei”, Zap. nauchn. semin. POMI, 465, 2017, 105–134

[9] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR

[10] T. Kojima, H. Konno, R. Weston, “The vertex-face correspondence and correlation functions of the fusion eight-vertex model I: The general formalism”, Nucl. Phys. B, 720 (2005), 348–398 | DOI | MR | Zbl

[11] N. Slavnov, “Algebraicheskii anzats Bete”, Lekts. kursy NOTs, 27, 2017, 3–189 | DOI | MR

[12] A. Antonov, K. Hasegawa, A. Zabrodin, “On trigonometric intertwining vectors and non-dynamical $R$-matrix for the Ruijsenaars model”, Nucl. Phys. B, 503 (1997), 747–770 | DOI | MR | Zbl

[13] H. J. de Vega, H. J. Giacomini, “Intertwining vectors and the connection between critical vertex and SOS models”, J. Phys. A: Math. Gen., 22 (1989), 2759–2779 | DOI | MR | Zbl

[14] E. K. Sklyanin, “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl

[15] H. Saleur, J. B. Zuber, Integrable lattice models and quantum groups, Lectures at the 1990 Trieste Spring School, Saclay SPhT/90-071 | MR

[16] P. P. Kulish, N. Yu. Reshetikhin and E. K. Skylyanin, “Yang–Baxter equation and representation theory: I”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl

[17] Kulish P.P., Sklyanin E.K., “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories, Lecture Notes in Physics, 151, eds. Hietarinta J., Montonen C., Springer, Berlin–Heidelberg, 1982 | MR

[18] P. P. Kulish, A. A. Stolin, “Deformed Yangians and integrable models”, Czech. J. Phys., 47 (1997), 1207–1212, arXiv: q-alg/9708024 | DOI | MR | Zbl

[19] R. Baxter, “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: II. Equivalence to a generalized ice-type lattice model”, Ann. Physics, 76 (1973), 25–47 | DOI | Zbl

[20] V. Pasquier, “Etiology of IRF models”, Commun. Math. Phys., 118 (1988), 355–364 | DOI | MR | Zbl