@article{ZNSL_2023_520_a1,
author = {P. V. Antonenko and P. A. Valinevich},
title = {Boltzmann weights and fusion procedure for the rational seven-vertex {SOS} model},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--49},
year = {2023},
volume = {520},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a1/}
}
P. V. Antonenko; P. A. Valinevich. Boltzmann weights and fusion procedure for the rational seven-vertex SOS model. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 17-49. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a1/
[1] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR
[2] E. Date, M. Jimbo, T. Miwa and M. Okado, “Fusion of the eight vertex SOS model”, Lett. Math. Phys., 12 (1986), 209–215 | DOI | MR
[3] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, “Exactly solvable SOS models II”, Adv. Stud. Pure Math., 16 (1988), 17–122 | DOI | MR | Zbl
[4] P. A. Valinevich, P. V. Antonenko, “Universalnaya $R$-matritsa dlya ratsionalnoi semivershinnoi modeli”, Zap. nauchn. sem. POMI, 487, 2019, 100–105
[5] D. Chicherin, S. E. Derkachov, V. P. Spiridonov, “From principal series to finite-dimensional solutions of the Yang-Baxter equation”, SIGMA, 12 (2016), 028 | MR | Zbl
[6] K. Atalikov, A. Zotov, Higher rank generalization of $11$-vertex rational $R$-matrix: IRF-Vertex relations and associative Yang–Baxter equation, arXiv: 2303.02391
[7] S. Derkachov, D. Karakhanyan, R. Kirschner, “Universal $R$ operator with Jordanian deformation of conformal symmetry”, Nucl. Phys. B, 681 (2004), 295–323 | DOI | MR | Zbl
[8] P. A. Valinevich, S. E. Derkachev, A. P. Isaev, A. V. Komisarchuk, “Ortogonalnye polinomy, $6j$-simvoly i statisticheskie vesa SOS-modelei”, Zap. nauchn. semin. POMI, 465, 2017, 105–134
[9] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR
[10] T. Kojima, H. Konno, R. Weston, “The vertex-face correspondence and correlation functions of the fusion eight-vertex model I: The general formalism”, Nucl. Phys. B, 720 (2005), 348–398 | DOI | MR | Zbl
[11] N. Slavnov, “Algebraicheskii anzats Bete”, Lekts. kursy NOTs, 27, 2017, 3–189 | DOI | MR
[12] A. Antonov, K. Hasegawa, A. Zabrodin, “On trigonometric intertwining vectors and non-dynamical $R$-matrix for the Ruijsenaars model”, Nucl. Phys. B, 503 (1997), 747–770 | DOI | MR | Zbl
[13] H. J. de Vega, H. J. Giacomini, “Intertwining vectors and the connection between critical vertex and SOS models”, J. Phys. A: Math. Gen., 22 (1989), 2759–2779 | DOI | MR | Zbl
[14] E. K. Sklyanin, “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl
[15] H. Saleur, J. B. Zuber, Integrable lattice models and quantum groups, Lectures at the 1990 Trieste Spring School, Saclay SPhT/90-071 | MR
[16] P. P. Kulish, N. Yu. Reshetikhin and E. K. Skylyanin, “Yang–Baxter equation and representation theory: I”, Lett. Math. Phys., 5 (1981), 393–403 | DOI | MR | Zbl
[17] Kulish P.P., Sklyanin E.K., “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories, Lecture Notes in Physics, 151, eds. Hietarinta J., Montonen C., Springer, Berlin–Heidelberg, 1982 | MR
[18] P. P. Kulish, A. A. Stolin, “Deformed Yangians and integrable models”, Czech. J. Phys., 47 (1997), 1207–1212, arXiv: q-alg/9708024 | DOI | MR | Zbl
[19] R. Baxter, “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain: II. Equivalence to a generalized ice-type lattice model”, Ann. Physics, 76 (1973), 25–47 | DOI | Zbl
[20] V. Pasquier, “Etiology of IRF models”, Commun. Math. Phys., 118 (1988), 355–364 | DOI | MR | Zbl