The spectrum of states of Bañados–Teitelboim–Zanelli black hole formed by a collapsing dust shell
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We perform the canonical analysis of an action $l = 0,\ldots, N$, $ n = -N,\ldots, - l, l,\ldots, N$, in which $2+1$-dimensional gravity with a negative cosmological constant is coupled to a cylindrically symmetric dust shell. The resulting phase space is finite dimensional having geometry of $SO(2,2)$ group manifold. Representing the Poisson brackets by commutators results in the algebra of observables which is a quantum double $D(\mathrm{SL}(2)_q)$. Deformation parameter $q$ is real when the total energy of the system is below the threshold of a black hole formation, and a root of unity when it is above. Inside the black hole the spectra of the shell radius and time operator are discrete and take on a finite set of values. The Hilbert space of the black hole is thus finite-dimensional.
@article{ZNSL_2023_520_a0,
     author = {A. A. Andrianov and D. A. Lyozin and A. N. Starodubtsev},
     title = {The spectrum of states of {Ba\~nados{\textendash}Teitelboim{\textendash}Zanelli} black hole formed by a collapsing dust shell},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--16},
     year = {2023},
     volume = {520},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a0/}
}
TY  - JOUR
AU  - A. A. Andrianov
AU  - D. A. Lyozin
AU  - A. N. Starodubtsev
TI  - The spectrum of states of Bañados–Teitelboim–Zanelli black hole formed by a collapsing dust shell
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2023
SP  - 5
EP  - 16
VL  - 520
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a0/
LA  - en
ID  - ZNSL_2023_520_a0
ER  - 
%0 Journal Article
%A A. A. Andrianov
%A D. A. Lyozin
%A A. N. Starodubtsev
%T The spectrum of states of Bañados–Teitelboim–Zanelli black hole formed by a collapsing dust shell
%J Zapiski Nauchnykh Seminarov POMI
%D 2023
%P 5-16
%V 520
%U http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a0/
%G en
%F ZNSL_2023_520_a0
A. A. Andrianov; D. A. Lyozin; A. N. Starodubtsev. The spectrum of states of Bañados–Teitelboim–Zanelli black hole formed by a collapsing dust shell. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 29, Tome 520 (2023), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2023_520_a0/

[1] G. 't Hooft, “Quantum Clones inside Black Holes”, Universe, 8:10 (2022), 537 | DOI | MR

[2] V. A. Berezin, A. Boyarsky, A. Yu. Neronov, “Quantum geometrodynamics for black holes and wormholes”, Phys. Rev. D, 57 (1997), 1118–1128 | DOI | MR

[3] A. A. Andrianov, A. Starodubtsev, Ya. Elmahalawy, “$(2+1)$-dimensional gravity coupled to a dust shell: quantization in terms of global phase space variables”, Theor. Math. Phys., 200:3 (2019), 1269–1281 | DOI | MR | Zbl

[4] M. Bañados, C. Teitelboim, J. Zanelli, “The black hole in three-dimensional space-time”, Phys. Rev. Lett., 69:13 (1992), 1849–1851 | DOI | MR

[5] A. A. Andrianov, A. Starodubtsev, Ya. Elmahalawy, “Quantum analysis of BTZ black hole formation due to the collapse of a dust shell”, Universe, 6:11 (2020), 201 | DOI

[6] A. Yu. Alekseev, A. Z. Malkin, “Symplectic structure of the moduli space of flat connection on a Riemann surface”, Commun. Math. Phys., 169 (1995), 99–120 | DOI | MR

[7] A. Ballesteros, F. J. Herranz, C. Meusburger, “Drinfel'd doubles for (2+1)-gravity”, Class. Quant. Grav., 30 (1550), 155012 | DOI | MR

[8] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Quantization of Lie groups and Lie algebras”, Algebra Analiz, 1:1 (1989), 178–206 | MR

[9] V. G. Drinfeld, “Quantum groups”, Zap. Nauchn. Semin. LOMI, 155, 1986, 18–49 | MR | Zbl

[10] M. P. Bronstein, “Quantum theory of weak gravitational fields”, Phys. Zeitschr. der Sowjetunion, 9 (1936), 140–157 | Zbl

[11] E. Witten, “$2 + 1$ dimensional gravity as an exactly soluble system”, Nucl. Phys. B, 311:1 (1988), 46–78 | DOI | MR | Zbl

[12] G. 't Hooft, “Canonical quantization of gravitating point particles in $2+1$ dimensions”, Class. Quantum Grav., 10 (1993), 1653 | DOI | MR | Zbl

[13] H. J. Matschull, M. Welling, “Quantum mechanics of a point particle in $2+1$ dimensional gravity”, Class. Quant. Grav., 15 (1998), 2981 | DOI | MR | Zbl

[14] C. Meusburger, B. J. Schroers, “Phase space structure of Chern-Simons theory with a non-standard puncture”, Nucl. Phys. B, 738 (2006), 425–456 | DOI | MR | Zbl

[15] I. M. Gel'fand, M. A. Naimark, “Unitary representations of the classical groups”, Trudy Mat. Inst. Steklov AN USSR, 36, 1950, 3–288 | MR