Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 229-263

Voir la notice de l'article provenant de la source Math-Net.Ru

For a second order linear elliptic equation with uniformly elliptic principal part in divergence form and drift from a Kato–Stummel type class we establish the unique solvability and estimates of solutions of the corresponding noncoercive Dirichlet problem.
@article{ZNSL_2022_519_a9,
     author = {M. D. Surnachev},
     title = {Estimates of solutions to the noncoercive {Dirichlet} problem for a second order elliptic equation in divergence form with drift from a {Kato} class},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {229--263},
     publisher = {mathdoc},
     volume = {519},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a9/}
}
TY  - JOUR
AU  - M. D. Surnachev
TI  - Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 229
EP  - 263
VL  - 519
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a9/
LA  - ru
ID  - ZNSL_2022_519_a9
ER  - 
%0 Journal Article
%A M. D. Surnachev
%T Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 229-263
%V 519
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a9/
%G ru
%F ZNSL_2022_519_a9
M. D. Surnachev. Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 229-263. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a9/