@article{ZNSL_2022_519_a9,
author = {M. D. Surnachev},
title = {Estimates of solutions to the noncoercive {Dirichlet} problem for a second order elliptic equation in divergence form with drift from a {Kato} class},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {229--263},
year = {2022},
volume = {519},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a9/}
}
TY - JOUR AU - M. D. Surnachev TI - Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 229 EP - 263 VL - 519 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a9/ LA - ru ID - ZNSL_2022_519_a9 ER -
%0 Journal Article %A M. D. Surnachev %T Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 229-263 %V 519 %U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a9/ %G ru %F ZNSL_2022_519_a9
M. D. Surnachev. Estimates of solutions to the noncoercive Dirichlet problem for a second order elliptic equation in divergence form with drift from a Kato class. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 229-263. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a9/
[1] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR
[2] M. Chicco, “Principio di massimo forte per sottosoluzioni di equazioni ellittiche di tipo variazionale”, Boll. Unione Mat. Ital. (3), 22 (1967), 368–372 | MR
[3] M. Chicco, “Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale”, Boll. Unione Mat. Ital. (4), 3 (1970), 384–394 | MR
[4] N.S. Trudinger, “Linear elliptic operators with measurable coefficients”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3), 27:2 (1973), 265–308 | MR
[5] M. Chicco, “An apriori inequality concerning elliptic second order partial differential equations of variational type”, Matematiche (Catania), 26 (1971), 173–182 | MR
[6] G. Bottaro, M. E. Marina, “Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati”, Boll. Unione Mat. Ital. (4), 8 (1973), 46–56 | MR
[7] G. Bottaro, “Problema al contorno misto per equazioni ellittiche di tipo variazionale su insiemi non limitati”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (8), 55:3–4 (1973), 187–193 | MR
[8] G. Bottaro, “Alcune condizioni sufficienti per l'esistenza e l'unicità della soluzione di una disequazione variazionale non coerciva”, Ann. Mat. Pura Appl. (4), 106 (1975), 187–203 | DOI | MR
[9] M. Transirico, M. Troisi, “Equazioni ellittiche del secondo ordine a coefficienti discontinui e di tipo variazionale in aperti non limitati”, Boll. Unione Mat. Ital. (7), 2 (1988), 385–398 | MR
[10] C. Vitanza, P. Zamboni, “The Dirichlet problem for second order differential equations with coefficients in the Stummel class in unbounded domains”, Ann. Univ. Ferrara, 40 (1994), 97–110 | DOI | MR
[11] M. Transirico, M. Troisi, A. Vitolo, “Spaces of Morrey type and elliptic equations in divergence form on unbounded domains”, Boll. Unione Mat. Ital. (7), 9 (1995), 153–174 | MR
[12] S. Monsurrò, M. Transirico, “Dirichlet problem for divergence form elliptic equations with discontinuous coefficients”, Bound. Value Probl., 2012 (2012), 20 pp. | DOI | MR
[13] S. Monsurrò, M. Transirico, “A priori bounds in $L^p$ for solutions of elliptic equations in divergence form”, Bull. Sci. Math., 137:7 (2013), 851–866 | DOI | MR
[14] S. Monsurrò, M. Transirico, “On some $L^p$ estimates for solutions of elliptic equations in unbounded domains”, Math. Bohem., 140:4 (2015), 507–515 | DOI | MR
[15] J. Droniou, “Non-coercive Linear Elliptic Problems”, Potential Anal., 17 (2002), 181–203 | DOI | MR
[16] L. Boccardo, “Some developments on Dirichlet problems with discontinuous coefficients”, Boll. Unione Mat. Ital., 2:1 (2009), 285–297 | MR
[17] L. Boccardo, “Dirichlet problems with singular convection terms and applications”, J. Diff. Eqs., 258:7 (2015), 2290–2314 | DOI | MR
[18] L. Boccardo, S. Buccheri, G.R. Cirmi, “Two Linear Noncoercive Dirichlet Problems in Duality”, Milan J. Math., 86 (2018), 97–104 | DOI | MR
[19] S. Buccheri, “Gradient estimates for nonlinear elliptic equations with first order terms”, Manuscripta Math., 165 (2021), 191–225 | DOI | MR
[20] L. Boccardo, L. Orsina, “Very singular solutions for linear Dirichlet problems with singular convection terms”, Nonlinear Anal., 194 (2020), 111437 | DOI | MR
[21] G. Zecca, “Existence and uniqueness for nonlinear elliptic equations with lower-order terms”, Nonlinear Anal., 75 (2012), 899–912 | DOI | MR
[22] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, NJ, 1971 | MR
[23] L. Grafakos, Classical Fourier Analysis, 3rd ed., Springer, New York, NY, 2014 | MR
[24] L. Pick, A. Kufner, O. John, S. Fučík, Function Spaces, v. 1, 2nd rev. and ext. ed., De Gruyter, Berlin–Boston, 2012 | MR
[25] R. O'Neil, “Convolution operators and $L(p,q)$ spaces”, Duke Math. J., 30 (1963), 129–142 | MR
[26] R. Hunt, “An extension of the Marcinkiewicz interpolation theorem to Lorentz spaces”, Bull. Amer. Math. Soc., 70 (1964), 803–807 | DOI | MR
[27] V. G. Mazya, “Ob otritsatelnom spektre mnogomernogo operatora Shredingera”, Dokl. AN SSSR, 144:4 (1962), 721–722
[28] V. G. Mazya, “K teorii mnogomernogo operatora Shredingera”, Izv. AN SSSR. Ser. matem., 28:5 (1964), 1145–1172
[29] V. G. Mazya, I. E. Verbitski, “The Schrödinger operator on the energy space: boundedness and compactness criteria”, Acta Math., 188 (2002), 263–302 | DOI | MR
[30] V. G. Mazya, I. E. Verbitski, “Infinitesimal form boundedness and Trudinger's subordination for the Schrödinger operator”, Invent. math., 162 (2005), 81–136 | DOI | MR
[31] V. G. Mazya, I. E. Verbitski, “Form boundedness of the general second-order differential operator”, Comm. Pure Appl. Math., 59:9 (2006), 1286–1329 | DOI | MR
[32] C. L. Fefferman, “The uncertainty principle”, Bull. Amer. Math. Soc., 9 (1983), 129–206 | DOI | MR
[33] F. Chiarenza, M. Frasca, “A remark on a paper by C. Fefferman”, Proc. Amer. Math. Soc., 108:2 (1990), 407–409 | MR
[34] M. Schechter, “Hamiltonians for singular potentials”, Indiana Univ. Math. J., 22 (1972), 483–503 | DOI | MR
[35] M. Schechter, “The spectrum of the Schrödinger operator”, Trans. Amer. Math. Soc., 312:1 (1989), 115–128 | MR
[36] B. Muckenhoupt, R. L. Wheeden, “Weighted norm inequalities for fractional integrals”, Trans. Amer. Math. Soc., 192 (1974), 251–275 | DOI | MR
[37] M. Aizenman, B. Simon, “Brownian motion and Harnack inequality for Schrödinger operators”, Comm. Pure Appl. Math., 35 (1982), 209–273 | DOI | MR
[38] B. Simon, “Schrödinger semigroups”, Bull. Amer. Math. Soc., 7 (1982), 447–526 | DOI | MR
[39] F. Chiarenza, E. Fabes, N. Garofalo, “Harnack's inequality for Schrödinger operators and the continuity of solutions”, Proc. Amer. Math. Soc., 98:3 (1986), 415–425 | MR
[40] P. Zamboni, “Some function spaces and elliptic partial differential equations”, Le Matematiche (Catania), 42:1–2 (1987), 171–178 | MR
[41] C. G. Simader, “An elementary proof of Harnack's inequality for Schrödinger operators and related topics”, Math. Z., 203:1 (1990), 129–152 | DOI | MR
[42] M. Bramanti, “Potential theory for stationary Schrödinger operators: a survey of results obtained with nonprobabilistic methods”, Le Matematiche (Catania), 47:1 (1992), 25–61 | MR
[43] Y. Pinchover, “On the equivalence of Green functions of second order elliptic equation in $\mathbb{R}^n$”, Differential and Integral Equations, 5:3 (1992), 481–493 | DOI | MR
[44] K. Kurata, “Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order”, Indiana University Math. J., 43:2 (1994), 411–440 | DOI | MR
[45] Qi Zhang, “A Harnack inequality for the equation $\nabla (a\nabla u)+b\nabla u=0$, when $|b| \in K_{n+1}$”, Manuscripta Math., 89 (1995), 61–77 | DOI | MR
[46] P. Zamboni, “The Harnack inequality for quasilinear elliptic equations under minimal assumptions”, Manuscripta Math., 102 (2000), 311–323 | DOI | MR
[47] Yu. A. Alkhutov, M. D. Surnachev, “Otsenki fundamentalnogo resheniya dlya divergentnogo ellipticheskogo uravneniya so snosom”, Zap. nauchn. sem. POMI, 489, 2020, 7–35
[48] V. Kozlov, A. I. Nazarov, “A comparison theorem for nonsmooth linear operators”, Potential Analysis, 54 (2021), 471–481 | DOI | MR
[49] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970 | MR
[50] W. Littman, G. Stampacchia and H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 45–79 | MR
[51] Yu. Alkhutov, M. Surnachev, “Global Green's function estimates for the convection-diffusion equation”, Complex Variables and Elliptic Equations, 67:5 (2022), 1046–1075 | DOI | MR