@article{ZNSL_2022_519_a7,
author = {V. G. Osmolovskii},
title = {Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {188--204},
year = {2022},
volume = {519},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a7/}
}
TY - JOUR AU - V. G. Osmolovskii TI - Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 188 EP - 204 VL - 519 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a7/ LA - ru ID - ZNSL_2022_519_a7 ER -
%0 Journal Article %A V. G. Osmolovskii %T Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 188-204 %V 519 %U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a7/ %G ru %F ZNSL_2022_519_a7
V. G. Osmolovskii. Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 188-204. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a7/
[1] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990
[2] Y. Grabovsky, “Bounds and extremal microstructures for two-component composites: A unified treatment based on the translation method”, Proc. R. Soc. Lond., Ser. A, 452 (1996), 919–944 | DOI | MR
[3] V. G. Osmolovskii, “Modelnaya variatsionnaya zadacha o fazovykh perekhodakh v mekhanike sploshnykh sred”, Probl. mat. anal., 108 (2021), 113–124
[4] L. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Mir, M., 1966
[5] V. G. Osmolovskii, “Tochnye resheniya variatsionnoi zadachi teorii fazovykh perekhodov mekhaniki sploshnykh sred”, Probl. mat. anal., 27 (2004), 171–205
[6] V. G. Osmolovskii, “Matematicheskie voprosy teorii fazovykh perekhodov”, Algebra i analiz, 29:5 (2017), 111–178
[7] D. Buttatso, M. Dzhakvinta, S. Gildebrandt, Odnomernye variatsionnye zadachi. Vvedenie, Nauchnaya Kniga, Novosibirsk, 2002
[8] V. G. Osmolovskii, “Teorema suschestvovaniya i slabaya forma uravnenii Lagranzha dlya variatsionnoi zadachi teorii fazovykh prevraschenii”, Sib. mat. zh., 35:4 (1994), 835–846 | MR
[9] V. G. Osmolovskii, “Boundary Value Problems with Free Surfaces in the Theory of Phase Transitions”, Differential equations, 53:13 (2017), 1734–1763 | DOI | MR
[10] V. G. Osmolovskii, “Ustoichivost odnofazovykh sostoyanii ravnovesiya v variatsionnoi zadache teorii uprugosti dvukhfazovykh sred. Mnogomernyi sluchai”, Probl. mat. anal., 91 (2018), 473–479