Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 188-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents two statements of the variational problem of phase transitions in the mechanics of elastic media and compares of their solutions.
@article{ZNSL_2022_519_a7,
     author = {V. G. Osmolovskii},
     title = {Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {188--204},
     year = {2022},
     volume = {519},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a7/}
}
TY  - JOUR
AU  - V. G. Osmolovskii
TI  - Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 188
EP  - 204
VL  - 519
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a7/
LA  - ru
ID  - ZNSL_2022_519_a7
ER  - 
%0 Journal Article
%A V. G. Osmolovskii
%T Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 188-204
%V 519
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a7/
%G ru
%F ZNSL_2022_519_a7
V. G. Osmolovskii. Comparision of properties of solutions of variational problems of the theory of two-phase elastic bodies in model and traditional formulations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 188-204. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a7/

[1] M. A. Grinfeld, Metody mekhaniki sploshnykh sred v teorii fazovykh prevraschenii, Nauka, M., 1990

[2] Y. Grabovsky, “Bounds and extremal microstructures for two-component composites: A unified treatment based on the translation method”, Proc. R. Soc. Lond., Ser. A, 452 (1996), 919–944 | DOI | MR

[3] V. G. Osmolovskii, “Modelnaya variatsionnaya zadacha o fazovykh perekhodakh v mekhanike sploshnykh sred”, Probl. mat. anal., 108 (2021), 113–124

[4] L. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Mir, M., 1966

[5] V. G. Osmolovskii, “Tochnye resheniya variatsionnoi zadachi teorii fazovykh perekhodov mekhaniki sploshnykh sred”, Probl. mat. anal., 27 (2004), 171–205

[6] V. G. Osmolovskii, “Matematicheskie voprosy teorii fazovykh perekhodov”, Algebra i analiz, 29:5 (2017), 111–178

[7] D. Buttatso, M. Dzhakvinta, S. Gildebrandt, Odnomernye variatsionnye zadachi. Vvedenie, Nauchnaya Kniga, Novosibirsk, 2002

[8] V. G. Osmolovskii, “Teorema suschestvovaniya i slabaya forma uravnenii Lagranzha dlya variatsionnoi zadachi teorii fazovykh prevraschenii”, Sib. mat. zh., 35:4 (1994), 835–846 | MR

[9] V. G. Osmolovskii, “Boundary Value Problems with Free Surfaces in the Theory of Phase Transitions”, Differential equations, 53:13 (2017), 1734–1763 | DOI | MR

[10] V. G. Osmolovskii, “Ustoichivost odnofazovykh sostoyanii ravnovesiya v variatsionnoi zadache teorii uprugosti dvukhfazovykh sred. Mnogomernyi sluchai”, Probl. mat. anal., 91 (2018), 473–479