Asymptotics of eigenvalues of the elasticity theory problem with the Winkler--Steklov spectral conditions at small parts of the boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 152-187

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotics of eigenpairs of the elasticity theory system is constructed in a three-dimensional domain with the Winkler–Steklov spectral boundry conditions at several small parts (the contact blots) and the Neumann (traction-free) conditions at the remaining part of the boundary. The asymptotic structures are essentially dependent on the distribution of the blots and the elastic or springy type of the contact. Various examples are considered and open questions are formulated.
@article{ZNSL_2022_519_a6,
     author = {S. A. Nazarov},
     title = {Asymptotics of eigenvalues of the elasticity theory problem with the {Winkler--Steklov} spectral conditions at small parts of the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {152--187},
     publisher = {mathdoc},
     volume = {519},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotics of eigenvalues of the elasticity theory problem with the Winkler--Steklov spectral conditions at small parts of the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 152
EP  - 187
VL  - 519
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/
LA  - ru
ID  - ZNSL_2022_519_a6
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of eigenvalues of the elasticity theory problem with the Winkler--Steklov spectral conditions at small parts of the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 152-187
%V 519
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/
%G ru
%F ZNSL_2022_519_a6
S. A. Nazarov. Asymptotics of eigenvalues of the elasticity theory problem with the Winkler--Steklov spectral conditions at small parts of the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 152-187. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/