Asymptotics of eigenvalues of the elasticity theory problem with the Winkler--Steklov spectral conditions at small parts of the boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 152-187
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotics of eigenpairs of the elasticity theory system is constructed in a three-dimensional domain with the Winkler–Steklov spectral boundry conditions at several small parts (the contact blots) and the Neumann (traction-free) conditions at the remaining part of the boundary. The asymptotic structures are essentially dependent on the distribution of the blots and the elastic or springy type of the contact. Various examples are considered and open questions are formulated.
@article{ZNSL_2022_519_a6,
author = {S. A. Nazarov},
title = {Asymptotics of eigenvalues of the elasticity theory problem with the {Winkler--Steklov} spectral conditions at small parts of the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {152--187},
publisher = {mathdoc},
volume = {519},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/}
}
TY - JOUR AU - S. A. Nazarov TI - Asymptotics of eigenvalues of the elasticity theory problem with the Winkler--Steklov spectral conditions at small parts of the boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 152 EP - 187 VL - 519 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/ LA - ru ID - ZNSL_2022_519_a6 ER -
%0 Journal Article %A S. A. Nazarov %T Asymptotics of eigenvalues of the elasticity theory problem with the Winkler--Steklov spectral conditions at small parts of the boundary %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 152-187 %V 519 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/ %G ru %F ZNSL_2022_519_a6
S. A. Nazarov. Asymptotics of eigenvalues of the elasticity theory problem with the Winkler--Steklov spectral conditions at small parts of the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 152-187. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/