@article{ZNSL_2022_519_a6,
author = {S. A. Nazarov},
title = {Asymptotics of eigenvalues of the elasticity theory problem with the {Winkler{\textendash}Steklov} spectral conditions at small parts of the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {152--187},
year = {2022},
volume = {519},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/}
}
TY - JOUR AU - S. A. Nazarov TI - Asymptotics of eigenvalues of the elasticity theory problem with the Winkler–Steklov spectral conditions at small parts of the boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 152 EP - 187 VL - 519 UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/ LA - ru ID - ZNSL_2022_519_a6 ER -
%0 Journal Article %A S. A. Nazarov %T Asymptotics of eigenvalues of the elasticity theory problem with the Winkler–Steklov spectral conditions at small parts of the boundary %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 152-187 %V 519 %U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/ %G ru %F ZNSL_2022_519_a6
S. A. Nazarov. Asymptotics of eigenvalues of the elasticity theory problem with the Winkler–Steklov spectral conditions at small parts of the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 152-187. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a6/
[1] S. G. Lekhnitskii, Teoriya uprugosti anizotropnogo tela, Nauka, M., 1977
[2] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988
[3] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[4] A. Bertram, Elasticity and placticity of large deformations, Springer-Verlag, Heidelberg, 2005 | MR
[5] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[6] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[7] S. A. Nazarov, “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Problemy matem. analiza, 16, izd-vo SPbGU, SPb, 1997, 167–192
[8] S. A. Nazarov, “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi matem. nauk, 54:5 (1999), 77–142 | MR
[9] S. A. Nazarov, “Neravenstva Korna dlya uprugikh sochlenenii massivnykh tel, tonkikh plastin i sterzhnei”, Uspekhi matem. nauk, 63:1 (2008), 37–110 | MR
[10] V. A. Kondratev, O. A. Oleinik, “Kraevye zadachi dlya sistemy teorii uprugosti v neogranichennykh oblastyakh. Neravenstvo Korna”, Uspekhi matem. nauk, 43:5 (1988), 55–98 | MR
[11] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980
[12] S. A. Nazarov, “Asimptoticheskie razlozheniya sobstvennykh chisel zadachi Steklova v singulyarno vozmuschennykh oblastyakh”, Algebra i analiz, 26:2 (2014), 119–184
[13] S. A. Nazarov, “Interaction of concentrated masses in a harmonically oscillating spatial body with Neumann boundary conditions”, RAIRO Model. Math. Anal. Numer., 27:6 (1993), 777–799 | DOI | MR
[14] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Wiley, New-York, 1992 | MR
[15] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University, Cambridge, 2002 | MR
[16] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292
[17] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin–New York, 1994 | MR
[18] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. Teoriya uprugosti, Nauka, M., 1982 | MR
[19] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR
[20] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda-Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82
[21] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122
[22] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, v. 1, 2, Akademie-Verlag, Berlin, 1991 ; Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhäuser Verlag, Basel, 2000 | MR | MR
[23] V. Kiado Piat, S. A. Nazarov, “Smeshannye kraevye zadachi v singulyarno vozmuschennykh dvumernykh oblastyakh so spektralnym usloviem Steklova”, Problemy matem. analiza, 106, Novosibirsk, 2020, 91–124