Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 114-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In $L_2(\mathbb{R})$, we consider an elliptic second-order differential operator $A_{\varepsilon}$, $\varepsilon >0$, given by $A_{\varepsilon} = - \frac{d}{dx} g(x/\varepsilon) \frac{d}{dx} + \varepsilon^{-2} p({x}/\varepsilon)$, with periodic coefficients. For small $\varepsilon$, we study the behavior of the resolvent of $A_{\varepsilon}$ in a regular point close to the edge of a spectral gap. We obtain approximation of this resolvent in the “energy” norm with error $O(\varepsilon)$. Approximation is described in terms of the spectral characteristics of the operator at the edge of the gap.
@article{ZNSL_2022_519_a5,
     author = {A. A. Mishulovich and V. A. Sloushch and T. A. Suslina},
     title = {Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--151},
     year = {2022},
     volume = {519},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/}
}
TY  - JOUR
AU  - A. A. Mishulovich
AU  - V. A. Sloushch
AU  - T. A. Suslina
TI  - Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 114
EP  - 151
VL  - 519
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/
LA  - ru
ID  - ZNSL_2022_519_a5
ER  - 
%0 Journal Article
%A A. A. Mishulovich
%A V. A. Sloushch
%A T. A. Suslina
%T Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 114-151
%V 519
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/
%G ru
%F ZNSL_2022_519_a5
A. A. Mishulovich; V. A. Sloushch; T. A. Suslina. Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 114-151. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/

[1] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., 1978 | MR

[2] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR

[3] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[4] M. Sh. Birman, T. A. Suslina, “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR

[5] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108

[6] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104

[7] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130

[8] V. V. Zhikov, “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. RAN, 403:3 (2005), 305–308 | MR

[9] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR

[10] V. V. Zhikov, S. E. Pastukhova, “Ob operatornykh otsenkakh v teorii usredneniya”, Uspekhi matem. nauk, 71:3 (2016), 27–122 | MR

[11] M. Sh. Birman, “O protsedure usredneniya dlya periodicheskikh operatorov v okrestnosti kraya vnutrennei lakuny”, Algebra i analiz, 15:4 (2003), 61–71

[12] T. A. Suslina, A. A. Kharin, “Usrednenie s uchetom korrektora dlya periodicheskogo ellipticheskogo operatora vblizi kra vnutrennei lakuny”, Problemy matematicheskogo analiza, 41 (2009), 127–141

[13] M. Sh. Birman, T. A. Suslina, “Usrednenie mnogomernogo periodicheskogo ellipticheskogo operatora v okrestnosti kraya vnutrennei lakuny”, Zapiski nauchnykh seminarov POMI, 318, 2004, 60–74

[14] T. A. Suslina, A. A. Kharin, “Usrednenie s uchetom korrektora dlya mnogomernogo periodicheskogo ellipticheskogo operatora vblizi kraya vnutrennei lakuny”, Problemy matematicheskogo analiza, 59 (2011), 177–193

[15] A. R. Akhmatova, E. S. Aksenova, V. A. Sloushch, T. A. Suslina, “Homogenization of the parabolic equation with periodic coefficients at the edge of a spectral gap”, Complex Variables and Elliptic Equations, 67:3 (2022), 523–555 | DOI | MR

[16] W. Kirsch, B. Simon, “Comparison theorems for the gap of Schrödinger operators”, J. Funct. Anal., 75:2 (1987), 396–410 | DOI | MR

[17] M. Sh. Birman, T. A. Suslina, “Two-dimensional periodic Pauli operator. The effective masses at the lower edge of the spectrum”, Oper. Theory Adv. Appl., 108, Birkhäuser, Basel, 1999, 13–31 | MR

[18] M. Sh. Birman, “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations”, Boundary Value Problems, Schrödinger Operators, Deformation Quantization: Adv. Partial Differential Equations, Math. Top., 8, Akademie Verlag, Berlin, 1995, 334–352 | MR

[19] M. Sh. Birman, “Diskretnyi spektr v lakunakh vozmuschennogo periodicheskogo operatora Shredingera. II. Neregulyarnye vozmuscheniya”, Algebra i analiz, 9:6 (1997), 62–89

[20] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 2, Izd-vo IL, M., 1961

[21] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[22] M. Sh. Birman, M. Z. Solomyak, “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi mat. nauk, 32:1 (1977), 17–84 | MR