Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 114-151
Voir la notice de l'article provenant de la source Math-Net.Ru
In $L_2(\mathbb{R})$, we consider an elliptic second-order differential operator $A_{\varepsilon}$, $\varepsilon >0$, given by $A_{\varepsilon} = - \frac{d}{dx} g(x/\varepsilon) \frac{d}{dx} + \varepsilon^{-2} p({x}/\varepsilon)$, with periodic coefficients. For small $\varepsilon$, we study the behavior of the resolvent of $A_{\varepsilon}$ in a regular point close to the edge of a spectral gap. We obtain approximation of this resolvent in the “energy” norm with error $O(\varepsilon)$. Approximation is described in terms of the spectral characteristics of the operator at the edge of the gap.
@article{ZNSL_2022_519_a5,
author = {A. A. Mishulovich and V. A. Sloushch and T. A. Suslina},
title = {Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--151},
publisher = {mathdoc},
volume = {519},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/}
}
TY - JOUR AU - A. A. Mishulovich AU - V. A. Sloushch AU - T. A. Suslina TI - Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 114 EP - 151 VL - 519 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/ LA - ru ID - ZNSL_2022_519_a5 ER -
%0 Journal Article %A A. A. Mishulovich %A V. A. Sloushch %A T. A. Suslina %T Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm %J Zapiski Nauchnykh Seminarov POMI %D 2022 %P 114-151 %V 519 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/ %G ru %F ZNSL_2022_519_a5
A. A. Mishulovich; V. A. Sloushch; T. A. Suslina. Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 114-151. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/