Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 114-151

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L_2(\mathbb{R})$, we consider an elliptic second-order differential operator $A_{\varepsilon}$, $\varepsilon >0$, given by $A_{\varepsilon} = - \frac{d}{dx} g(x/\varepsilon) \frac{d}{dx} + \varepsilon^{-2} p({x}/\varepsilon)$, with periodic coefficients. For small $\varepsilon$, we study the behavior of the resolvent of $A_{\varepsilon}$ in a regular point close to the edge of a spectral gap. We obtain approximation of this resolvent in the “energy” norm with error $O(\varepsilon)$. Approximation is described in terms of the spectral characteristics of the operator at the edge of the gap.
@article{ZNSL_2022_519_a5,
     author = {A. A. Mishulovich and V. A. Sloushch and T. A. Suslina},
     title = {Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--151},
     publisher = {mathdoc},
     volume = {519},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/}
}
TY  - JOUR
AU  - A. A. Mishulovich
AU  - V. A. Sloushch
AU  - T. A. Suslina
TI  - Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 114
EP  - 151
VL  - 519
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/
LA  - ru
ID  - ZNSL_2022_519_a5
ER  - 
%0 Journal Article
%A A. A. Mishulovich
%A V. A. Sloushch
%A T. A. Suslina
%T Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 114-151
%V 519
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/
%G ru
%F ZNSL_2022_519_a5
A. A. Mishulovich; V. A. Sloushch; T. A. Suslina. Homogenization of a one-dimensional periodic elliptic operator at the edge of a spectral gap: operator estimates in the energy norm. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 114-151. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a5/