Local Aleksandrov–Bakelman type maximum estimate for solutions to elliptic equations on a book-type stratified set
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 105-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the last decades studies of partial differential equations on complex structures have been gaining their popularity. In particular, we notice equations on so-called stratified sets. We prove the Aleksandrov–Bakelman type maximum principle for linear elliptic second order equation on a “book” type stratified set.
@article{ZNSL_2022_519_a4,
     author = {F. D. Mironenko and A. I. Nazarov},
     title = {Local {Aleksandrov{\textendash}Bakelman} type maximum estimate for solutions to elliptic equations on a book-type stratified set},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--113},
     year = {2022},
     volume = {519},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a4/}
}
TY  - JOUR
AU  - F. D. Mironenko
AU  - A. I. Nazarov
TI  - Local Aleksandrov–Bakelman type maximum estimate for solutions to elliptic equations on a book-type stratified set
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 105
EP  - 113
VL  - 519
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a4/
LA  - ru
ID  - ZNSL_2022_519_a4
ER  - 
%0 Journal Article
%A F. D. Mironenko
%A A. I. Nazarov
%T Local Aleksandrov–Bakelman type maximum estimate for solutions to elliptic equations on a book-type stratified set
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 105-113
%V 519
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a4/
%G ru
%F ZNSL_2022_519_a4
F. D. Mironenko; A. I. Nazarov. Local Aleksandrov–Bakelman type maximum estimate for solutions to elliptic equations on a book-type stratified set. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 105-113. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a4/

[1] D. E. Apushkinskaya, A. I. Nazarov, “Linear two-phase Venttsel problems”, Arkiv för matematik, 39:2 (2001), 201–222 | DOI | MR

[2] D. E. Apushkinskaya, A. I. Nazarov, “Hölder estimates of solutions to initial-boundary value problems for parabolic equations of nondivergent form with Wentzel boundary condition”, Amer. Math. Soc. Transl. Ser. 2, 164 (1995), 1–13 | MR

[3] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973

[4] Y. Luo, “An Aleksandrov-Bakelman type maximum principle and applications”, J. Differ. Equations, 101:2 (1993), 213–231 | DOI | MR

[5] A. D. Aleksandrov, “Nekotorye otsenki, kasayuschiesya zadachi Dirikhle”, DAN SSSR, 134:5 (1960), 1001–1004

[6] D. E. Apushkinskaya, A. I. Nazarov, “Lemma o normalnoi proizvodnoi i vokrug nee”, Usp. matem. nauk, 77 (2022), 3–68

[7] A. I. Nazarov, “Printsip maksimuma A.D. Aleksandrova”, Sovremennaya matematika i ee prilozheniya, 29, 2005, 127–143

[8] I. Ya. Bakelman, “K teorii kvazilineinykh ellipticheskikh uravnenii”, Sib. matem. zh., 2 (1961), 179–186

[9] A. I. Nazarov, N. N. Uraltseva, “Vypuklo-monotonnye obolochki i otsenka maksimuma resheniya parabolicheskogo uravneniya”, Zap. nauchn. semin. POMI, 147, 1985, 95–109

[10] S. N. Oschepkova, O. M. Penkin, “Teorema o srednem dlya ellipticheskogo operatora na stratifitsirovannom mnozhestve”, Matem. zam., 81 (2007), 417–426 | MR