Local Aleksandrov--Bakelman type maximum estimate for solutions to elliptic equations on a book-type stratified set
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 105-113

Voir la notice de l'article provenant de la source Math-Net.Ru

In the last decades studies of partial differential equations on complex structures have been gaining their popularity. In particular, we notice equations on so-called stratified sets. We prove the Aleksandrov–Bakelman type maximum principle for linear elliptic second order equation on a “book” type stratified set.
@article{ZNSL_2022_519_a4,
     author = {F. D. Mironenko and A. I. Nazarov},
     title = {Local {Aleksandrov--Bakelman} type maximum estimate for solutions to elliptic equations on a book-type stratified set},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {105--113},
     publisher = {mathdoc},
     volume = {519},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a4/}
}
TY  - JOUR
AU  - F. D. Mironenko
AU  - A. I. Nazarov
TI  - Local Aleksandrov--Bakelman type maximum estimate for solutions to elliptic equations on a book-type stratified set
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 105
EP  - 113
VL  - 519
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a4/
LA  - ru
ID  - ZNSL_2022_519_a4
ER  - 
%0 Journal Article
%A F. D. Mironenko
%A A. I. Nazarov
%T Local Aleksandrov--Bakelman type maximum estimate for solutions to elliptic equations on a book-type stratified set
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 105-113
%V 519
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a4/
%G ru
%F ZNSL_2022_519_a4
F. D. Mironenko; A. I. Nazarov. Local Aleksandrov--Bakelman type maximum estimate for solutions to elliptic equations on a book-type stratified set. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 105-113. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a4/