@article{ZNSL_2022_519_a3,
author = {A. I. Karol},
title = {Singular values of compact pseudodifferential operators of variable order with nonsmooth symbol},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--104},
year = {2022},
volume = {519},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a3/}
}
A. I. Karol. Singular values of compact pseudodifferential operators of variable order with nonsmooth symbol. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 67-104. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a3/
[1] A. Benassi, S. Jaffard, D. Roux, “Gaussian processes and pseudodifferential elliptic operators”, Rev. Math. Iberoamer., 13:1 (1997), 19–81 | DOI | MR
[2] A. Benassi, S. Cohen, J. Istas, “Identifying the multifractional function of a Gaussian process”, Statist. Probab. Lett., 39 (1998), 337–345 | DOI | MR
[3] J. F. Coeurjolly, “Identification of multifractional Brownian motion”, Bernoulli, 11:6 (2005), 987–1008 | DOI | MR
[4] A. I. Karol, A. I. Nazarov, “Spectral Analysis for some Multifractional Gaussian Processes”, Russian J. Math. Phys., 28:4 (2021), 488–500 | DOI | MR
[5] A. Karol, A. Nazarov, Ya. Nikitin, “Small ball probabilities for Gaussian random fields and tensor products of compact operators”, Trans. Amer. Math. Soc., 360:3 (2008), 1443–1474 | DOI | MR
[6] G. Lieberman, “Regularized distance and its applications”, Pacific J. Math., 117:2 (1985), 329–352 | DOI | MR
[7] M. A. Lifshits, Lectures on Gaussian Processes, Springer, New York, 2012 | MR
[8] A. I. Nazarov, “Log-level comparison principle for small ball probabilities”, Stat. Prob. Lett., 79:4 (2009), 481–486 | DOI | MR
[9] R.-F. Peltier, J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results, Inria research report No 2645, 1995
[10] Theor. Prob. and Math. Stat., 80 (2010), 119–130 | DOI
[11] J. Ryvkina, “Fractional Brownian motion with variable Hurst parameter: definition and properties”, J. Theor. Probab., 28:3 (2015), 866–891 | DOI | MR
[12] E. Seneta, Regularly Varying Functions, Lect. Notes in Math., 508, Springer, Berlin–Heidelberg, 1976 | DOI | MR
[13] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami”, Vestn. LGU, ser. matem., 1977, no. 13, 13–21
[14] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami II”, Vestn. LGU, ser. matem., 1979, no. 13, 5–10
[15] M. Sh. Birman, M. Z. Solomyak, “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi matem. nauk, 32:1 (1977), 17–84 | MR
[16] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb., 2010, 464 pp.
[17] T. Vaidl, “Obschie operatornye idealy slabogo tipa”, Algebra i analiz, 4:3 (1992), 117–144 | MR
[18] A. I. Karol, “Asimptotika spektra kompaktnykh pdo s simvolom, negladkim po prostranstvennym peremennym”, Probl. matem. anal., 89 (2017), 21–39
[19] A. I. Karol, “Asimptotika singulyarnykh chisel kompaktnykh PDO s simvolom, negladkim po prostranstvennym peremennym”, Funkts. analiz i ego pril., 53:4 (2019), 89–92 | MR
[20] A. I. Karol, “Singulyarnye chisla kompaktnykh psevdodifferentsialnykh operatorov s simvolom, negladkim po prostranstvennym peremennym”, Sib. mat. zh., 61:4 (2020), 849–866 | MR
[21] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR