Singular values of compact pseudodifferential operators of variable order with nonsmooth symbol
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 67-104
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider compact pseudodifferential operators with symbols whose decaying order with respect to the variable $\xi$ depends on the space variable. We obtain the estimates for singular values as well as validity conditions of the Weyl's asymptotics. The results are formulated in terms of the symbol belonging to the classes of multipliers of integral operators. We give applications of the results to the $L_2$ - small ball deviation asymptotics for Gaussian processes with variable Hurst parameter.
@article{ZNSL_2022_519_a3,
author = {A. I. Karol},
title = {Singular values of compact pseudodifferential operators of variable order with nonsmooth symbol},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--104},
publisher = {mathdoc},
volume = {519},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a3/}
}
TY - JOUR AU - A. I. Karol TI - Singular values of compact pseudodifferential operators of variable order with nonsmooth symbol JO - Zapiski Nauchnykh Seminarov POMI PY - 2022 SP - 67 EP - 104 VL - 519 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a3/ LA - ru ID - ZNSL_2022_519_a3 ER -
A. I. Karol. Singular values of compact pseudodifferential operators of variable order with nonsmooth symbol. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 67-104. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a3/