Canonical forms of metric graph eikonal algebra and graph geometry
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 35-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The algebra of eikonals $\mathfrak E$ of a metric graph $\Omega$ is an operator $C^*$-algebra defined by a dynamical system with boundary control describing wave propagation. In this paper, two canonical block forms of the algebra $\mathfrak E$ are described for an arbitrary connected locally compact graph – algebraic and geometric. These forms define some metric graphs (frames) $\mathfrak F^{ \rm a}$ and $\mathfrak F^{ \rm g}$. The frame $\mathfrak F^{ \rm a}$ is defined by the boundary data of inverse problems. Frame $\mathfrak F^{ \rm g}$ is related to graph geometry. A class is being introduced of ordinary graphs, whose frames are identical: $\mathfrak F^{ \rm a}\equiv\mathfrak F^{ \rm g}$. The results are supposed to be used in the inverse problem, which consists in reconstructing a graph from boundary inverse data.
@article{ZNSL_2022_519_a2,
     author = {M. I. Belishev and A. V. Kaplun},
     title = {Canonical forms of metric graph eikonal algebra and graph geometry},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--66},
     year = {2022},
     volume = {519},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. V. Kaplun
TI  - Canonical forms of metric graph eikonal algebra and graph geometry
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2022
SP  - 35
EP  - 66
VL  - 519
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a2/
LA  - ru
ID  - ZNSL_2022_519_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. V. Kaplun
%T Canonical forms of metric graph eikonal algebra and graph geometry
%J Zapiski Nauchnykh Seminarov POMI
%D 2022
%P 35-66
%V 519
%U http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a2/
%G ru
%F ZNSL_2022_519_a2
M. I. Belishev; A. V. Kaplun. Canonical forms of metric graph eikonal algebra and graph geometry. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 50, Tome 519 (2022), pp. 35-66. http://geodesic.mathdoc.fr/item/ZNSL_2022_519_a2/

[1] W. Arveson, An invitation to $C^*$-algebras, Springer-Verlag Inc., 1976 | MR

[2] M. I. Belishev, “Granichnoe upravlenie i tomografiya Rimanovykh mnogoobrazii (BC-metod)”, Uspekhi mat. nauk, 72:4 (2017), 3–66 | MR

[3] M. I. Belishev, A. V. Kaplun, “Eikonal algebra on a graph of simple structure”, Eurasian J. Math. Computer Appl., 6:3 (2018), 4–33

[4] M. I. Belishev, A. V. Kaplun, “Kanonicheskoe predstavlenie $C^*$-algebry eikonalov metricheskogo grafa”, Izv. RAN. ser. matem., 86:4 (2022), 3–50 | MR

[5] M. I. Belishev, N. Wada, “On revealing graph cycles via boundary measurements”, Inverse Problems, 25:10 (2009), 1–25 | DOI | MR

[6] M. I. Belishev, N. Wada, “A $C^*$-algebra associated with dynamics on a graph of strings”, J. Math. Soc. Japan, 67:3 (2015), 1239–1274 | DOI | MR

[7] N. B. Vasilev, “$C^*$-algebry s konechnomernymi predstavleniyami”, Uspekhi mat. nauk, 21:1 (1966), 135–154 | MR

[8] Zh. Diksme, $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974

[9] A. V. Kaplun, “Kanonicheskoe predstavlenie $C^*$-algebry eikonalov prosteishego grafa”, Zap. nauchn. semin. POMI, 506, 2021, 57–78

[10] A. V. Kaplun, Algebra eikonalov metricheskogo grafa, Dissertatsiya k.f.-m.n. http://pdmi.ras.ru/pdmi/diss-council-01/dissertations/presented

[11] M. Nilsen, “$C^*$-bundles and $C_0(X)$-algebras”, Indiana Univ. Math. J., 45:2 (1996), 463–477 | DOI | MR

[12] Dzh. Merfi, $S*$-algebry i teoriya operatorov, Faktorial, M., 1997

[13] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR